default.yaml 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # Default training settings and hyperparameters for medium-augmentation COCO training
  3. task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
  4. mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
  5. # Train settings -------------------------------------------------------------------------------------------------------
  6. model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
  7. data: # (str, optional) path to data file, i.e. coco128.yaml
  8. epochs: 100 # (int) number of epochs to train for
  9. patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
  10. batch: 16 # (int) number of images per batch (-1 for AutoBatch)
  11. imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
  12. save: True # (bool) save train checkpoints and predict results
  13. save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
  14. cache: False # (bool) True/ram, disk or False. Use cache for data loading
  15. device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
  16. workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
  17. project: # (str, optional) project name
  18. name: # (str, optional) experiment name, results saved to 'project/name' directory
  19. exist_ok: False # (bool) whether to overwrite existing experiment
  20. pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
  21. optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
  22. verbose: True # (bool) whether to print verbose output
  23. seed: 0 # (int) random seed for reproducibility
  24. deterministic: True # (bool) whether to enable deterministic mode
  25. single_cls: False # (bool) train multi-class data as single-class
  26. rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
  27. cos_lr: False # (bool) use cosine learning rate scheduler
  28. close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
  29. resume: False # (bool) resume training from last checkpoint
  30. amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
  31. fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
  32. profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
  33. freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
  34. # Segmentation
  35. overlap_mask: True # (bool) masks should overlap during training (segment train only)
  36. mask_ratio: 4 # (int) mask downsample ratio (segment train only)
  37. # Classification
  38. dropout: 0.0 # (float) use dropout regularization (classify train only)
  39. # Val/Test settings ----------------------------------------------------------------------------------------------------
  40. val: True # (bool) validate/test during training
  41. split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
  42. save_json: False # (bool) save results to JSON file
  43. save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
  44. conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
  45. iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
  46. max_det: 300 # (int) maximum number of detections per image
  47. half: False # (bool) use half precision (FP16)
  48. dnn: False # (bool) use OpenCV DNN for ONNX inference
  49. plots: True # (bool) save plots during train/val
  50. # Prediction settings --------------------------------------------------------------------------------------------------
  51. source: # (str, optional) source directory for images or videos
  52. show: False # (bool) show results if possible
  53. save_txt: False # (bool) save results as .txt file
  54. save_conf: False # (bool) save results with confidence scores
  55. save_crop: False # (bool) save cropped images with results
  56. show_labels: True # (bool) show object labels in plots
  57. show_conf: True # (bool) show object confidence scores in plots
  58. vid_stride: 1 # (int) video frame-rate stride
  59. line_width: # (int, optional) line width of the bounding boxes, auto if missing
  60. visualize: False # (bool) visualize model features
  61. augment: False # (bool) apply image augmentation to prediction sources
  62. agnostic_nms: False # (bool) class-agnostic NMS
  63. classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
  64. retina_masks: False # (bool) use high-resolution segmentation masks
  65. boxes: True # (bool) Show boxes in segmentation predictions
  66. # Export settings ------------------------------------------------------------------------------------------------------
  67. format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
  68. keras: False # (bool) use Kera=s
  69. optimize: False # (bool) TorchScript: optimize for mobile
  70. int8: False # (bool) CoreML/TF INT8 quantization
  71. dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
  72. simplify: False # (bool) ONNX: simplify model
  73. opset: # (int, optional) ONNX: opset version
  74. workspace: 4 # (int) TensorRT: workspace size (GB)
  75. nms: False # (bool) CoreML: add NMS
  76. # Hyperparameters ------------------------------------------------------------------------------------------------------
  77. lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
  78. lrf: 0.01 # (float) final learning rate (lr0 * lrf)
  79. momentum: 0.937 # (float) SGD momentum/Adam beta1
  80. weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
  81. warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
  82. warmup_momentum: 0.8 # (float) warmup initial momentum
  83. warmup_bias_lr: 0.1 # (float) warmup initial bias lr
  84. box: 7.5 # (float) box loss gain
  85. cls: 0.5 # (float) cls loss gain (scale with pixels)
  86. dfl: 1.5 # (float) dfl loss gain
  87. pose: 12.0 # (float) pose loss gain
  88. kobj: 1.0 # (float) keypoint obj loss gain
  89. label_smoothing: 0.0 # (float) label smoothing (fraction)
  90. nbs: 64 # (int) nominal batch size
  91. hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
  92. hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
  93. hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
  94. degrees: 0.0 # (float) image rotation (+/- deg)
  95. translate: 0.1 # (float) image translation (+/- fraction)
  96. scale: 0.5 # (float) image scale (+/- gain)
  97. shear: 0.0 # (float) image shear (+/- deg)
  98. perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
  99. flipud: 0.0 # (float) image flip up-down (probability)
  100. fliplr: 0.5 # (float) image flip left-right (probability)
  101. mosaic: 1.0 # (float) image mosaic (probability)
  102. mixup: 0.0 # (float) image mixup (probability)
  103. copy_paste: 0.0 # (float) segment copy-paste (probability)
  104. # Custom config.yaml ---------------------------------------------------------------------------------------------------
  105. cfg: # (str, optional) for overriding defaults.yaml
  106. # Tracker settings ------------------------------------------------------------------------------------------------------
  107. tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]