123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from pathlib import Path
- from ultralytics import YOLO
- from ultralytics.cfg import get_cfg
- from ultralytics.engine.exporter import Exporter
- from ultralytics.models.yolo import classify, detect, segment
- from ultralytics.utils import ASSETS, DEFAULT_CFG, SETTINGS
- CFG_DET = 'yolov8n.yaml'
- CFG_SEG = 'yolov8n-seg.yaml'
- CFG_CLS = 'yolov8n-cls.yaml' # or 'squeezenet1_0'
- CFG = get_cfg(DEFAULT_CFG)
- MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
- def test_func(*args): # noqa
- print('callback test passed')
- def test_export():
- exporter = Exporter()
- exporter.add_callback('on_export_start', test_func)
- assert test_func in exporter.callbacks['on_export_start'], 'callback test failed'
- f = exporter(model=YOLO(CFG_DET).model)
- YOLO(f)(ASSETS) # exported model inference
- def test_detect():
- overrides = {'data': 'coco8.yaml', 'model': CFG_DET, 'imgsz': 32, 'epochs': 1, 'save': False}
- CFG.data = 'coco8.yaml'
- CFG.imgsz = 32
- # Trainer
- trainer = detect.DetectionTrainer(overrides=overrides)
- trainer.add_callback('on_train_start', test_func)
- assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
- trainer.train()
- # Validator
- val = detect.DetectionValidator(args=CFG)
- val.add_callback('on_val_start', test_func)
- assert test_func in val.callbacks['on_val_start'], 'callback test failed'
- val(model=trainer.best) # validate best.pt
- # Predictor
- pred = detect.DetectionPredictor(overrides={'imgsz': [64, 64]})
- pred.add_callback('on_predict_start', test_func)
- assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
- result = pred(source=ASSETS, model=f'{MODEL}.pt')
- assert len(result), 'predictor test failed'
- overrides['resume'] = trainer.last
- trainer = detect.DetectionTrainer(overrides=overrides)
- try:
- trainer.train()
- except Exception as e:
- print(f'Expected exception caught: {e}')
- return
- Exception('Resume test failed!')
- def test_segment():
- overrides = {'data': 'coco8-seg.yaml', 'model': CFG_SEG, 'imgsz': 32, 'epochs': 1, 'save': False}
- CFG.data = 'coco8-seg.yaml'
- CFG.imgsz = 32
- # YOLO(CFG_SEG).train(**overrides) # works
- # trainer
- trainer = segment.SegmentationTrainer(overrides=overrides)
- trainer.add_callback('on_train_start', test_func)
- assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
- trainer.train()
- # Validator
- val = segment.SegmentationValidator(args=CFG)
- val.add_callback('on_val_start', test_func)
- assert test_func in val.callbacks['on_val_start'], 'callback test failed'
- val(model=trainer.best) # validate best.pt
- # Predictor
- pred = segment.SegmentationPredictor(overrides={'imgsz': [64, 64]})
- pred.add_callback('on_predict_start', test_func)
- assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
- result = pred(source=ASSETS, model=f'{MODEL}-seg.pt')
- assert len(result), 'predictor test failed'
- # Test resume
- overrides['resume'] = trainer.last
- trainer = segment.SegmentationTrainer(overrides=overrides)
- try:
- trainer.train()
- except Exception as e:
- print(f'Expected exception caught: {e}')
- return
- Exception('Resume test failed!')
- def test_classify():
- overrides = {'data': 'imagenet10', 'model': CFG_CLS, 'imgsz': 32, 'epochs': 1, 'save': False}
- CFG.data = 'imagenet10'
- CFG.imgsz = 32
- # YOLO(CFG_SEG).train(**overrides) # works
- # Trainer
- trainer = classify.ClassificationTrainer(overrides=overrides)
- trainer.add_callback('on_train_start', test_func)
- assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
- trainer.train()
- # Validator
- val = classify.ClassificationValidator(args=CFG)
- val.add_callback('on_val_start', test_func)
- assert test_func in val.callbacks['on_val_start'], 'callback test failed'
- val(model=trainer.best)
- # Predictor
- pred = classify.ClassificationPredictor(overrides={'imgsz': [64, 64]})
- pred.add_callback('on_predict_start', test_func)
- assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
- result = pred(source=ASSETS, model=trainer.best)
- assert len(result), 'predictor test failed'
|