123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import subprocess
- from pathlib import Path
- import pytest
- from ultralytics.utils import ASSETS, SETTINGS
- WEIGHTS_DIR = Path(SETTINGS['weights_dir'])
- TASK_ARGS = [
- ('detect', 'yolov8n', 'coco8.yaml'),
- ('segment', 'yolov8n-seg', 'coco8-seg.yaml'),
- ('classify', 'yolov8n-cls', 'imagenet10'),
- ('pose', 'yolov8n-pose', 'coco8-pose.yaml'), ] # (task, model, data)
- EXPORT_ARGS = [
- ('yolov8n', 'torchscript'),
- ('yolov8n-seg', 'torchscript'),
- ('yolov8n-cls', 'torchscript'),
- ('yolov8n-pose', 'torchscript'), ] # (model, format)
- def run(cmd):
- # Run a subprocess command with check=True
- subprocess.run(cmd.split(), check=True)
- def test_special_modes():
- run('yolo help')
- run('yolo checks')
- run('yolo version')
- run('yolo settings reset')
- run('yolo cfg')
- @pytest.mark.parametrize('task,model,data', TASK_ARGS)
- def test_train(task, model, data):
- run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk')
- @pytest.mark.parametrize('task,model,data', TASK_ARGS)
- def test_val(task, model, data):
- # Download annotations to run pycocotools eval
- # from ultralytics.utils import SETTINGS, Path
- # from ultralytics.utils.downloads import download
- # url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
- # download(f'{url}instances_val2017.json', dir=Path(SETTINGS['datasets_dir']) / 'coco8/annotations')
- # download(f'{url}person_keypoints_val2017.json', dir=Path(SETTINGS['datasets_dir']) / 'coco8-pose/annotations')
- # Validate
- run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json')
- @pytest.mark.parametrize('task,model,data', TASK_ARGS)
- def test_predict(task, model, data):
- run(f'yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt')
- @pytest.mark.parametrize('model,format', EXPORT_ARGS)
- def test_export(model, format):
- run(f'yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32')
- def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'):
- # Warning: MUST use imgsz=640
- run(f'yolo train {task} model={model} data={data} imgsz=640 epochs=1, cache = disk') # add coma, space to args
- run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt")
- def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8-seg.yaml'):
- source = ASSETS / 'bus.jpg'
- run(f'yolo segment val {task} model={model} data={data} imgsz=32')
- run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt')
- from ultralytics import FastSAM
- from ultralytics.models.fastsam import FastSAMPrompt
- # Create a FastSAM model
- sam_model = FastSAM(model) # or FastSAM-x.pt
- # Run inference on an image
- everything_results = sam_model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
- # Everything prompt
- prompt_process = FastSAMPrompt(source, everything_results, device='cpu')
- ann = prompt_process.everything_prompt()
- # Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
- ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
- # Text prompt
- ann = prompt_process.text_prompt(text='a photo of a dog')
- # Point prompt
- # points default [[0,0]] [[x1,y1],[x2,y2]]
- # point_label default [0] [1,0] 0:background, 1:foreground
- ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
- prompt_process.plot(annotations=ann, output='./')
- def test_mobilesam():
- from ultralytics import SAM
- # Load the model
- model = SAM(WEIGHTS_DIR / 'mobile_sam.pt')
- # Source
- source = ASSETS / 'zidane.jpg'
- # Predict a segment based on a point prompt
- model.predict(source, points=[900, 370], labels=[1])
- # Predict a segment based on a box prompt
- model.predict(source, bboxes=[439, 437, 524, 709])
- # Predict all
- # model(source)
- # Slow Tests
- @pytest.mark.slow
- @pytest.mark.parametrize('task,model,data', TASK_ARGS)
- def test_train_gpu(task, model, data):
- run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device="0"') # single GPU
- run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device="0,1"') # multi GPU
|