123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- import argparse
- import itertools
- import os
- from typing import Sequence, TypeVar, Union
- from libfb.py.log import set_simple_logging # type: ignore[import]
- from torchgen import gen
- from torchgen.context import native_function_manager
- from torchgen.model import DispatchKey, NativeFunctionsGroup, NativeFunctionsViewGroup
- from torchgen.static_runtime import config, generator
- # Given a list of `grouped_native_functions` sorted by their op names, return a list of
- # lists each of which groups ops that share the base name. For example, `mean` and
- # `mean.dim` are grouped together by this function.
- NativeGroupT = TypeVar(
- "NativeGroupT",
- bound=Union[NativeFunctionsGroup, NativeFunctionsViewGroup],
- )
- def group_functions_by_op_name(
- grouped_native_functions: Sequence[NativeGroupT],
- ) -> Sequence[Sequence[NativeGroupT]]:
- if not grouped_native_functions:
- return []
- groups = []
- def is_supported(g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup]) -> bool:
- with native_function_manager(g):
- return generator.is_supported(g)
- eligible_ops = (g for g in grouped_native_functions if is_supported(g))
- groups = [
- list(group)
- for k, group in (
- itertools.groupby(
- eligible_ops,
- key=lambda g: config.func_name_base_str(g),
- )
- )
- ]
- return groups
- def clang_format(cpp_file_path: str) -> None:
- import subprocess
- subprocess.run(["clang-format", "-i", cpp_file_path])
- def write_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
- code = "\n".join(cpp_ops)
- generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
- // AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
- #include <torch/csrc/jit/runtime/static/ops.h>
- #include <ATen/CPUFunctions.h>
- #include <ATen/InferSize.h>
- #include <ATen/NativeFunctions.h>
- #include <ATen/Parallel.h>
- #include <ATen/ScalarOps.h>
- #include <ATen/TensorUtils.h>
- #include <ATen/cpu/vec/functional.h>
- #include <ATen/cpu/vec/vec.h>
- #include <ATen/native/EmbeddingBag.h>
- #include <ATen/native/Fill.h>
- #include <ATen/native/IndexingUtils.h>
- #include <ATen/native/NonSymbolicBC.h>
- #include <ATen/native/Resize.h>
- #include <ATen/native/SharedReduceOps.h>
- #include <ATen/native/TensorAdvancedIndexing.h>
- #include <ATen/native/cpu/SerialStackImpl.h>
- #include <ATen/native/layer_norm.h>
- #include <ATen/native/quantized/cpu/fbgemm_utils.h>
- #include <ATen/native/quantized/cpu/qembeddingbag.h>
- #include <ATen/native/quantized/cpu/qembeddingbag_prepack.h>
- #include <ATen/quantized/QTensorImpl.h>
- #include <ATen/quantized/Quantizer.h>
- #include <c10/core/ScalarType.h>
- #include <c10/core/WrapDimMinimal.h>
- #include <c10/util/irange.h>
- #include <torch/csrc/jit/ir/ir.h>
- #include <torch/csrc/jit/runtime/static/impl.h>
- #include <torch/csrc/jit/runtime/static/te_wrapper.h>
- #include <torch/csrc/jit/runtime/vararg_functions.h>
- #include <torch/csrc/jit/tensorexpr/ir.h>
- #include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
- #include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
- #include <torch/csrc/jit/tensorexpr/loopnest.h>
- namespace torch {{
- namespace jit {{
- {code}
- }} // namespace jit
- }} // namespace torch
- """
- with open(file_path, "w") as f:
- f.write(generated)
- clang_format(file_path)
- def write_test_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
- code = "\n".join(cpp_ops)
- generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
- // AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
- #include <gtest/gtest.h>
- #include <torch/csrc/jit/runtime/static/impl.h>
- #include <torch/torch.h>
- #include "test_utils.h"
- using namespace caffe2;
- using namespace torch;
- using namespace torch::jit;
- using namespace torch::jit::test;
- using c10::IValue;
- {code}
- """
- with open(file_path, "w") as f:
- f.write(generated)
- clang_format(file_path)
- def main() -> None:
- parser = argparse.ArgumentParser(description="Generate ATen source files")
- parser.add_argument(
- "-s",
- "--source-path",
- help="path to source directory for ATen",
- default="caffe2/aten/src/ATen",
- )
- parser.add_argument(
- "-p",
- "--generated-ops-cpp-path",
- help="path to directory to generate op dispatcher .cpp file",
- default="caffe2/torch/csrc/jit/runtime/static/generated_ops.cpp",
- )
- parser.add_argument(
- "-t",
- "--generated-ops-test-cpp-path",
- help="path to directory to generate op dispatcher .cpp file",
- default="caffe2/benchmarks/static_runtime/test_generated_ops.cc",
- )
- options = parser.parse_args()
- native_yaml_path = os.path.join(options.source_path, "native/native_functions.yaml")
- tags_yaml_path = os.path.join(options.source_path, "native/tags.yaml")
- parsed_yaml = gen.parse_native_yaml(native_yaml_path, tags_yaml_path)
- native_functions, backend_indices = (
- parsed_yaml.native_functions,
- parsed_yaml.backend_indices,
- )
- op_generator = generator.GenOpDispatcher()
- test_case_generator = generator.GenOpTestCase()
- native_functions_groups = [
- g
- for g in gen.get_grouped_native_functions(native_functions)
- if isinstance(g, NativeFunctionsGroup)
- ]
- supported_functions_groups = group_functions_by_op_name(native_functions_groups)
- out_variant_op_result = [
- op_generator.out_variant(groups, backend_indices[DispatchKey.CPU])
- for groups in supported_functions_groups
- ]
- out_variant_test_result = [
- test_case_generator.out_variant(groups) for groups in supported_functions_groups
- ]
- native_functions_view_groups = [
- g
- for g in gen.get_grouped_by_view_native_functions(native_functions)
- if isinstance(g, NativeFunctionsViewGroup)
- ]
- supported_functions_view_groups = group_functions_by_op_name(
- native_functions_view_groups
- )
- view_op_result = [
- op_generator.view(groups, backend_indices[DispatchKey.CPU])
- for groups in supported_functions_view_groups
- ]
- view_test_result = [
- test_case_generator.view(groups) for groups in supported_functions_view_groups
- ]
- op_result = out_variant_op_result + ["\n\n"] + view_op_result
- test_result = out_variant_test_result + ["\n\n"] + view_test_result
- write_cpp(op_result, options.generated_ops_cpp_path)
- write_test_cpp(test_result, options.generated_ops_test_cpp_path)
- print(
- "\ntotal grouped native ops: %d"
- % len(gen.get_grouped_native_functions(native_functions))
- )
- print("grouped native ops with out variant: %d" % len(native_functions_groups))
- supported_functions_num = sum(
- [len(groups) for groups in supported_functions_groups]
- )
- print("generated functions groups with out variant: %d" % supported_functions_num)
- print("\nview grouped native ops: %d" % len(native_functions_view_groups))
- supported_view_functions_num = sum(
- [len(groups) for groups in supported_functions_view_groups]
- )
- print("generated functions view groups: %d" % supported_view_functions_num)
- print(
- "\noverall generated : %d"
- % (supported_functions_num + supported_view_functions_num)
- )
- if __name__ == "__main__":
- set_simple_logging(escape_newlines=False)
- main()
|