123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750 |
- #pragma once
- #ifdef TORCH_ASSERT_NO_OPERATORS
- #error This change adds a dependency on native_functions.yaml, \
- meaning the file will need to be re-compiled every time an operator \
- is changed or added. Consider if your change would be better placed in \
- another file, or if a more specific header might achieve the same goal. \
- See NOTE: [Tensor vs. TensorBase]
- #endif
- #include <c10/core/Device.h>
- #include <c10/core/Layout.h>
- #include <c10/core/MemoryFormat.h>
- #include <c10/core/QScheme.h>
- #include <c10/core/Stream.h>
- #include <c10/core/Scalar.h>
- #include <c10/core/ScalarType.h>
- #include <c10/core/ScalarTypeToTypeMeta.h>
- #include <c10/core/Storage.h>
- #include <c10/core/TensorImpl.h>
- #include <c10/core/UndefinedTensorImpl.h>
- #include <c10/core/WrapDimMinimal.h>
- #include <c10/util/Exception.h>
- #include <c10/util/Deprecated.h>
- #include <c10/util/MaybeOwned.h>
- #include <c10/util/Optional.h>
- #include <c10/util/OptionalArrayRef.h>
- #include <c10/util/intrusive_ptr.h>
- #include <c10/macros/Export.h>
- #include <ATen/core/CheckMemoryFormat.h>
- #include <ATen/core/DeprecatedTypePropertiesRegistry.h>
- #include <ATen/core/DeprecatedTypeProperties.h>
- #include <ATen/core/NamedTensor.h>
- #include <ATen/core/QuantizerBase.h>
- #include <c10/core/SymInt.h>
- #include <ATen/core/TensorAccessor.h>
- #include <ATen/core/TensorBase.h>
- #include <ATen/MethodOperators.h>
- namespace c10{
- template<class T> class List;
- template<class T> class IListRef;
- }
- namespace at {
- struct Generator;
- struct Type;
- class DeprecatedTypeProperties;
- class Tensor;
- } // namespace at
- namespace at {
- namespace indexing {
- struct TensorIndex;
- } // namespace indexing
- } // namespace at
- namespace torch { namespace autograd {
- struct Node;
- }} // namespace torch::autograd
- namespace at {
- class OptionalTensorRef;
- class Tensor;
- using TensorList = ArrayRef<Tensor>;
- using ITensorList = c10::IListRef<Tensor>;
- using Stream = c10::Stream;
- // Tensor is a "generic" object holding a pointer to the underlying TensorImpl object, which
- // has an embedded reference count. In this way, Tensor is similar to boost::intrusive_ptr.
- //
- // For example:
- //
- // void func(Tensor a) {
- // Tensor b = a;
- // ...
- // }
- //
- // In this example, when we say Tensor b = a, we are creating a new object that points to the
- // same underlying TensorImpl, and bumps its reference count. When b goes out of scope, the
- // destructor decrements the reference count by calling release() on the TensorImpl it points to.
- // The existing constructors, operator overloads, etc. take care to implement the correct semantics.
- //
- // Note that Tensor can also be NULL, i.e. it is not associated with any underlying TensorImpl, and
- // special care must be taken to handle this.
- class TORCH_API Tensor: public TensorBase {
- protected:
- // Create a Tensor with a +0 reference count. Special care must be
- // taken to avoid decrementing this reference count at destruction
- // time. Intended to support MaybeOwnedTraits<Tensor>.
- explicit Tensor(unsafe_borrow_t, const TensorBase& rhs): TensorBase(unsafe_borrow_t{}, rhs) {}
- friend MaybeOwnedTraits<Tensor>;
- friend OptionalTensorRef;
- public:
- Tensor() = default;
- // This constructor should not be used by end users and is an implementation
- // detail invoked by autogenerated code.
- explicit Tensor(
- c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
- : TensorBase(std::move(tensor_impl)) {}
- Tensor(const Tensor &tensor) = default;
- Tensor(Tensor &&tensor) = default;
- // Implicitly move-constructible from TensorBase, but must be explicit to increase refcount
- explicit Tensor(const TensorBase &base): TensorBase(base) {}
- /*implicit*/ Tensor(TensorBase &&base): TensorBase(std::move(base)) {}
- // Creates a new wrapper from TensorImpl. Intentionally a free method because
- // it should be used with care. Checks necessary invariants
- static Tensor wrap_tensor_impl(
- c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) {
- return TensorBase::wrap_tensor_impl(std::move(tensor_impl));
- }
- Tensor contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const {
- return TensorBase::contiguous(memory_format);
- }
- Tensor conj() const {
- if (!this->is_complex()) {
- return *this;
- }
- switch (this->layout()) {
- case at::kSparse:
- case at::kSparseCsr:
- case at::kSparseCsc:
- case at::kSparseBsr:
- case at::kSparseBsc:
- return this->conj_physical();
- default:
- return this->_conj();
- }
- }
- // Aliased by Dimname overloads, so need explicit using
- using TensorBase::size;
- using TensorBase::sym_size;
- using TensorBase::stride;
- /// Should be used if *this can reasonably be expected to be contiguous and
- /// performance is important.
- /// Compared to contiguous, it saves a reference count
- /// increment/decrement if *this is already contiguous, at the cost
- /// in all cases of an extra pointer of stack usage, an extra branch
- /// to access, and an extra branch at destruction time.
- c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const &;
- // Use .contiguous() instead. Trying to borrow from a prvalue Tensor
- // will only lead to trouble and dangling references.
- c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) && = delete;
- // The following overloads are very intruiging. Consider the following
- // program:
- //
- // x[1] = 3;
- //
- // We would expect that the first entry of x is written to 3. But how can we
- // actually achieve this? x[1] evaluates to a tensor...
- //
- // The answer is, using a ref-qualifier. x[1] is an rvalue, which cannot be
- // (profitably) assigned to in the traditional sense, so we overload
- // assignment to mean, "Actually, copy 3 into the tensor data." This is done
- // with an rvalue-reference ref-qualified overload (the methods with && at the
- // end of their type.)
- //
- // There's one more fly in the ointment: We also want
- //
- // Tensor x = y;
- //
- // to work, and we want it NOT to copy. So we need a traditional operator=
- // overload. But we MUST specify a mutable lvalue ref-qualifier, to
- // disambiguate the traditional overload from the rvalue-reference
- // ref-qualified overload. Otherwise, it will be ambiguous, because
- // a non ref-qualified method is eligible for all situations.
- // Unfortunately, we have to write these constructors out manually
- // to work around an MSVC bug:
- // error C2580: 'at::Tensor &at::Tensor::operator =(const at::Tensor &) &':
- // multiple versions of a defaulted special member functions are not allowed
- // Tensor& operator=(const Tensor&) & = default;
- // Tensor& operator=(Tensor&&) & = default;
- // Also MSVC will wrongly issue the following warning with the aforementioned fix
- // warning C4522: 'at::Tensor': multiple assignment operators specified
- // Let's just skip the warning.
- //
- // TODO: temporarily disabled
- Tensor& operator=(const TensorBase& x) & {
- impl_ = x.getIntrusivePtr();
- return *this;
- }
- Tensor& operator=(TensorBase&& x) & noexcept {
- impl_ = x.unsafeReleaseIntrusivePtr();
- return *this;
- }
- Tensor& operator=(const Tensor &x) & {
- return operator=(static_cast<const TensorBase&>(x));
- }
- Tensor& operator=(Tensor &&x) & noexcept {
- return operator=(static_cast<TensorBase&&>(x));
- }
- Tensor& operator=(const Scalar &v) && {
- return fill_(v);
- }
- Tensor& operator=(const Tensor &rhs) && {
- return copy_(rhs);
- }
- Tensor& operator=(Tensor&& rhs) && {
- return copy_(rhs);
- }
- C10_DEPRECATED_MESSAGE("Tensor.type() is deprecated. Instead use Tensor.options(), which in many cases (e.g. in a constructor) is a drop-in replacement. If you were using data from type(), that is now available from Tensor itself, so instead of tensor.type().scalar_type(), use tensor.scalar_type() instead and instead of tensor.type().backend() use tensor.device().")
- DeprecatedTypeProperties & type() const {
- return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
- dispatchKeyToBackend(legacyExtractDispatchKey(key_set())),
- scalar_type());
- }
- Tensor toType(ScalarType t) const {
- return to(options().dtype(t), /*non_blocking*/ false, /*copy*/ false);
- }
- // TODO: Deprecate me
- Tensor toBackend(Backend b) const {
- return to(options().device(backendToDeviceType(b)).layout(layout_from_backend(b)), /*non_blocking*/ false, /*copy*/ false);
- }
- C10_DEPRECATED_MESSAGE("Tensor.is_variable() is deprecated; everything is a variable now. (If you want to assert that variable has been appropriately handled already, use at::impl::variable_excluded_from_dispatch())")
- bool is_variable() const noexcept {
- return !at::impl::variable_excluded_from_dispatch();
- }
- template<typename T>
- C10_DEPRECATED_MESSAGE("Tensor.data<T>() is deprecated. Please use Tensor.data_ptr<T>() instead.")
- T * data() const {
- return data_ptr<T>();
- }
- template <typename T>
- T item() const;
- template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
- C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
- GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() const & {
- return generic_packed_accessor<T,N,PtrTraits,index_t>();
- }
- template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
- C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
- GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() && = delete;
- Tensor operator~() const {
- return bitwise_not();
- }
- Tensor operator-() const {
- return neg();
- }
- Tensor& operator+=(const Tensor & other) {
- return add_(other);
- }
- Tensor& operator+=(const Scalar & other) {
- return add_(other);
- }
- Tensor& operator-=(const Tensor & other) {
- return sub_(other);
- }
- Tensor& operator-=(const Scalar & other) {
- return sub_(other);
- }
- Tensor& operator*=(const Tensor & other) {
- return mul_(other);
- }
- Tensor& operator*=(const Scalar & other) {
- return mul_(other);
- }
- Tensor& operator/=(const Tensor & other) {
- return div_(other);
- }
- Tensor& operator/=(const Scalar & other) {
- return div_(other);
- }
- Tensor& operator&=(const Tensor & other) {
- return bitwise_and_(other);
- }
- Tensor& operator|=(const Tensor & other) {
- return bitwise_or_(other);
- }
- Tensor& operator^=(const Tensor & other) {
- return bitwise_xor_(other);
- }
- Tensor operator[](const Scalar & index) const {
- if (!index.isIntegral(false)) {
- TORCH_CHECK_INDEX(false, "Can only index tensors with integral scalars");
- }
- return this->operator[](index.toLong());
- }
- Tensor operator[](const Tensor & index) const {
- // These properties are checked in the Scalar constructor, but we already
- // check them here to provide more useful diagnostics for the user.
- if (!index.defined()) {
- TORCH_CHECK_INDEX(false, "Can only index with tensors that are defined");
- }
- if (index.dim() != 0) {
- TORCH_CHECK_INDEX(false,
- "Can only index with tensors that are scalars (zero-dim)");
- }
- // The Scalar(Tensor) constructor is explicit, so we need to call it.
- return this->operator[](index.item());
- }
- Tensor operator[](int64_t index) const {
- return select(0, index);
- }
- Tensor index(ArrayRef<at::indexing::TensorIndex> indices) const;
- Tensor index(std::initializer_list<at::indexing::TensorIndex> indices) const;
- Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, Tensor const & rhs);
- Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, const Scalar& v);
- Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, Tensor const & rhs);
- Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, const Scalar& v);
- Tensor cpu() const {
- return to(options().device(DeviceType::CPU), /*non_blocking*/ false, /*copy*/ false);
- }
- // TODO: The Python version also accepts arguments
- Tensor cuda() const {
- return to(options().device(DeviceType::CUDA), /*non_blocking*/ false, /*copy*/ false);
- }
- Tensor hip() const {
- return to(options().device(DeviceType::HIP), /*non_blocking*/ false, /*copy*/ false);
- }
- Tensor ve() const {
- return to(options().device(DeviceType::VE), /*non_blocking*/ false, /*copy*/ false);
- }
- Tensor vulkan() const {
- return to(options().device(DeviceType::Vulkan), /*non_blocking*/ false, /*copy*/ false);
- }
- Tensor metal() const {
- return to(options().device(DeviceType::Metal), /*non_blocking*/ false, /*copy*/ false);
- }
- Tensor meta() const {
- return to(options().device(DeviceType::Meta), /*non_blocking*/ false, /*copy*/ false);
- }
- // ~~~~~ Autograd API ~~~~~
- /// \fn bool is_leaf() const;
- ///
- /// All Tensors that have `requires_grad()` which is ``false`` will be leaf Tensors by convention.
- ///
- /// For Tensors that have `requires_grad()` which is ``true``, they will be leaf Tensors if they were
- /// created by the user. This means that they are not the result of an operation and so
- /// `grad_fn()` is `nullptr`.
- ///
- /// Only leaf Tensors will have their `grad()` populated during a call to `backward()`.
- /// To get `grad()` populated for non-leaf Tensors, you can use `retain_grad()`.
- ///
- /// Example:
- /// @code
- /// auto a = torch::rand(10, torch::requires_grad());
- /// std::cout << a.is_leaf() << std::endl; // prints `true`
- ///
- /// auto b = torch::rand(10, torch::requires_grad()).to(torch::kCUDA);
- /// std::cout << b.is_leaf() << std::endl; // prints `false`
- /// // b was created by the operation that cast a cpu Tensor into a cuda Tensor
- ///
- /// auto c = torch::rand(10, torch::requires_grad()) + 2;
- /// std::cout << c.is_leaf() << std::endl; // prints `false`
- /// // c was created by the addition operation
- ///
- /// auto d = torch::rand(10).cuda();
- /// std::cout << d.is_leaf() << std::endl; // prints `true`
- /// // d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
- ///
- /// auto e = torch::rand(10).cuda().requires_grad_();
- /// std::cout << e.is_leaf() << std::endl; // prints `true`
- /// // e requires gradients and has no operations creating it
- ///
- /// auto f = torch::rand(10, torch::device(torch::kCUDA).requires_grad(true));
- /// std::cout << f.is_leaf() << std::endl; // prints `true`
- /// // f requires grad, has no operation creating it
- /// @endcode
- /// \fn void backward(const Tensor & gradient={}, c10::optional<bool> retain_graph=c10::nullopt, bool create_graph=false, c10::optional<TensorList> inputs=c10::nullopt) const;
- ///
- /// Computes the gradient of current tensor with respect to graph leaves.
- ///
- /// The graph is differentiated using the chain rule. If the tensor is
- /// non-scalar (i.e. its data has more than one element) and requires
- /// gradient, the function additionally requires specifying ``gradient``.
- /// It should be a tensor of matching type and location, that contains
- /// the gradient of the differentiated function w.r.t. this Tensor.
- ///
- /// This function accumulates gradients in the leaves - you might need to
- /// zero them before calling it.
- ///
- /// \param gradient Gradient w.r.t. the
- /// tensor. If it is a tensor, it will be automatically converted
- /// to a Tensor that does not require grad unless ``create_graph`` is True.
- /// None values can be specified for scalar Tensors or ones that
- /// don't require grad. If a None value would be acceptable then
- /// this argument is optional.
- /// \param retain_graph If ``false``, the graph used to compute
- /// the grads will be freed. Note that in nearly all cases setting
- /// this option to True is not needed and often can be worked around
- /// in a much more efficient way. Defaults to the value of
- /// ``create_graph``.
- /// \param create_graph If ``true``, graph of the derivative will
- /// be constructed, allowing to compute higher order derivative
- /// products. Defaults to ``false``.
- /// \param inputs Inputs w.r.t. which the gradient will be accumulated into
- /// ``at::Tensor::grad``. All other Tensors will be ignored. If not
- /// provided, the gradient is accumulated into all the leaf Tensors
- /// that were used to compute the current tensor.
- /// When inputs are provided and a given input is not a leaf,
- /// the current implementation will call its grad_fn (even though it is not strictly needed to get this gradients).
- /// It is an implementation detail on which the user should not rely.
- /// See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
- void backward(const Tensor & gradient={}, c10::optional<bool> retain_graph=c10::nullopt, bool create_graph=false, c10::optional<TensorList> inputs=c10::nullopt) const {
- // NB: Adding this wrapper to _backward here because we'd like our
- // 'backwards' api to accept the 'inputs' argument optionally. Since code gen
- // currently does not support optional of TensorList our approach is to replace
- // backward in native_functions.yaml with _backward and call it here instead.
- if (inputs.has_value()) {
- TORCH_CHECK(inputs.value().size() > 0, "'inputs' argument to backward cannot be empty")
- this->_backward(inputs.value(), gradient, retain_graph, create_graph);
- } else {
- this->_backward({}, gradient, retain_graph, create_graph);
- }
- }
- /// \fn Tensor detach() const;
- ///
- /// Returns a new Tensor, detached from the current graph.
- /// The result will never require gradient.
- /// \fn Tensor & detach_() const;
- ///
- /// Detaches the Tensor from the graph that created it, making it a leaf.
- /// Views cannot be detached in-place.
- /// \fn void retain_grad() const;
- ///
- /// Enables this Tensor to have their :attr:`grad` populated during
- /// :func:`backward`. This is a no-op for leaf tensors.
- /// \fn bool retains_grad() const;
- ///
- /// Is ``true`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be
- /// populated during :func:`backward`, ``false`` otherwise.
- const Tensor& set_requires_grad(bool requires_grad) const {
- TensorBase::set_requires_grad(requires_grad);
- return *this;
- }
- /// Return a mutable reference to the gradient. This is conventionally
- /// used as `t.grad() = x` to set a gradient to a completely new tensor.
- /// Note that this function work with a non-const Tensor and is not
- /// thread safe.
- Tensor& mutable_grad() const {
- return impl_->mutable_grad();
- }
- /// This function returns an undefined tensor by default and returns a defined tensor
- /// the first time a call to `backward()` computes gradients for this Tensor.
- /// The attribute will then contain the gradients computed and future calls
- /// to `backward()` will accumulate (add) gradients into it.
- const Tensor& grad() const {
- const Tensor& maybe_grad = impl_->grad();
- if (!is_leaf() && !retains_grad() && !maybe_grad.defined()) {
- TORCH_WARN(
- "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad "
- "attribute won't be populated during autograd.backward(). If you indeed want the .grad "
- "field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. "
- "If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor "
- "instead. See github.com/pytorch/pytorch/pull/30531 for more informations.");
- }
- return maybe_grad;
- }
- // The Forward AD API functions below are low level and are not to be used by end
- // users who should use the API provided in torch/csrc/autograd.h
- /// This function returns the forward gradient for this Tensor at the given level.
- const Tensor& _fw_grad(uint64_t level) const {
- return impl_->_fw_grad(level, *this);
- }
- /// This function can be used to set the value of the forward grad.
- /// Note that the given new_grad might not be used directly if it has different
- /// metadata (size/stride/storage offset) compared to this Tensor. In that case,
- /// new_grad content will be copied into a new Tensor
- void _set_fw_grad(const TensorBase& new_grad, uint64_t level, bool is_inplace_op) const {
- impl_->_set_fw_grad(new_grad, *this, level, is_inplace_op);
- }
- // STOP. Thinking of adding a method here, which only makes use
- // of other ATen methods? Define it in native_functions.yaml.
- //example
- //Tensor * add(Tensor & b);
- ${tensor_method_declarations}
- // Special C++ only overloads for std()-like functions (See gh-40287)
- // These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
- // So, for example std(0) would select the std(unbiased=False) overload
- Tensor var(int dim) const {
- return var(IntArrayRef{dim});
- }
- Tensor std(int dim) const {
- return std(IntArrayRef{dim});
- }
- // We changed .dtype() to return a TypeMeta in #12766. Ideally, we want the
- // at::kDouble and its friends to be TypeMeta's, but that hasn't happened yet.
- // Before that change, we make this method to maintain BC for C++ usage like
- // `x.to(y.dtype)`.
- // TODO: remove following two after at::kDouble and its friends are TypeMeta's.
- inline Tensor to(caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
- return this->to(/*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
- }
- inline Tensor to(Device device, caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
- return this->to(device, /*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
- }
- template <typename F, typename... Args>
- decltype(auto) m(F func, Args&&... params) const {
- return func(*this, std::forward<Args>(params)...);
- }
- /// NOTE: This is similar to the legacy `.data()` function on `Variable`, and is intended
- /// to be used from functions that need to access the `Variable`'s equivalent `Tensor`
- /// (i.e. `Tensor` that shares the same storage and tensor metadata with the `Variable`).
- ///
- /// One notable difference with the legacy `.data()` function is that changes to the
- /// returned `Tensor`'s tensor metadata (e.g. sizes / strides / storage / storage_offset)
- /// will not update the original `Variable`, due to the fact that this function
- /// shallow-copies the `Variable`'s underlying TensorImpl.
- at::Tensor tensor_data() const {
- return TensorBase::tensor_data();
- }
- /// NOTE: `var.variable_data()` in C++ has the same semantics as `tensor.data`
- /// in Python, which create a new `Variable` that shares the same storage and
- /// tensor metadata with the original `Variable`, but with a completely new
- /// autograd history.
- ///
- /// NOTE: If we change the tensor metadata (e.g. sizes / strides /
- /// storage / storage_offset) of a variable created from `var.variable_data()`, those
- /// changes will not update the original variable `var`. In `.variable_data()`, we set
- /// `allow_tensor_metadata_change_` to false to make such changes explicitly illegal,
- /// in order to prevent users from changing metadata of `var.variable_data()`
- /// and expecting the original variable `var` to also be updated.
- at::Tensor variable_data() const {
- return TensorBase::variable_data();
- }
- // Hooks
- //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- template <typename T>
- using hook_return_void_t = std::enable_if_t<std::is_void<typename c10::invoke_result_t<T&, Tensor>>::value, unsigned>;
- template <typename T>
- using hook_return_var_t = std::enable_if_t<std::is_same<typename c10::invoke_result_t<T&, Tensor>, Tensor>::value, unsigned>;
- /// Registers a backward hook.
- ///
- /// The hook will be called every time a gradient with respect to the Tensor is computed.
- /// The hook should have one of the following signature:
- /// ```
- /// hook(Tensor grad) -> Tensor
- /// ```
- /// ```
- /// hook(Tensor grad) -> void
- /// ```
- /// The hook should not modify its argument, but it can optionally return a new gradient
- /// which will be used in place of `grad`.
- ///
- /// This function returns the index of the hook in the list which can be used to remove hook.
- ///
- /// Example:
- /// @code
- /// auto v = torch::tensor({0., 0., 0.}, torch::requires_grad());
- /// auto h = v.register_hook([](torch::Tensor grad){ return grad * 2; }); // double the gradient
- /// v.backward(torch::tensor({1., 2., 3.}));
- /// // This prints:
- /// // ```
- /// // 2
- /// // 4
- /// // 6
- /// // [ CPUFloatType{3} ]
- /// // ```
- /// std::cout << v.grad() << std::endl;
- /// v.remove_hook(h); // removes the hook
- /// @endcode
- template <typename T>
- hook_return_void_t<T> register_hook(T&& hook) const;
- template <typename T>
- hook_return_var_t<T> register_hook(T&& hook) const;
- // Variable methods
- //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Tensor data() const {
- return TensorBase::data();
- }
- void _backward(TensorList inputs, const c10::optional<Tensor>& gradient, c10::optional<bool> keep_graph, bool create_graph) const;
- const Tensor& requires_grad_(bool _requires_grad=true) const {
- TensorBase::requires_grad_(_requires_grad);
- return *this;
- }
- };
- namespace detail {
- // Helper creator for Tensor class which doesn't requires the users to pass
- // in an intrusive_ptr instead it just converts the argument passed to
- // requested intrusive_ptr type.
- template <typename T, typename... Args>
- Tensor make_tensor(Args&&... args) {
- return Tensor(c10::make_intrusive<T>(std::forward<Args>(args)...));
- }
- } // namespace detail
- } // namespace at
- namespace at {
- ${tensor_method_definitions}
- } // namespace at
- namespace c10 {
- template <>
- struct MaybeOwnedTraits<at::Tensor> {
- using owned_type = at::Tensor;
- using borrow_type = at::Tensor;
- static borrow_type createBorrow(const owned_type& from) {
- // NOTE: this can be implemented without the special
- // unsafe_borrow_t Tensor constructor as
- //
- // return borrow_type(c10::intrusive_ptr<at::TensorImpl, at::UndefinedTensorImpl>::reclaim(from.unsafeGetTensorImpl()));
- //
- // but that hurts inlining due to the nullptr check in the
- // Tensor(c10::intrusive_ptr<...>) constructor. We already know
- // that from.impl_ isn't null because from is a valid Tensor, so
- // we needn't do the check again. (using __builtin_assume can
- // avoid this, but wouldn't be portable to MSVC.)
- return borrow_type(borrow_type::unsafe_borrow_t{}, from);
- }
- static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
- lhs.unsafeReleaseTensorImpl();
- // See above note: this can be implemented with public API
- // similarly to createBorrow(), but that would hurt inlining.
- lhs = borrow_type(borrow_type::unsafe_borrow_t{}, rhs);
- }
- static void destroyBorrow(borrow_type& toDestroy) {
- toDestroy.unsafeReleaseTensorImpl(); // "leak" it, but it was already +0.
- }
- static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
- return borrow;
- }
- static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
- return &borrow;
- }
- static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
- return true;
- }
- };
- template <>
- struct ExclusivelyOwnedTraits<at::Tensor> {
- using repr_type = at::Tensor;
- using pointer_type = at::Tensor*;
- using const_pointer_type = const at::Tensor*;
- static repr_type nullRepr() {
- return at::Tensor();
- }
- template <class... Args>
- static repr_type createInPlace(Args&&... args) {
- return at::Tensor(std::forward<Args>(args)...);
- }
- static repr_type moveToRepr(at::Tensor&& x) {
- return std::move(x);
- }
- static void destroyOwned(at::Tensor& x) {
- return ExclusivelyOwnedTraits<at::TensorBase>::destroyOwned(x);
- }
- static at::Tensor take(at::Tensor& x) {
- return std::move(x);
- }
- static pointer_type getImpl(repr_type& x) {
- return &x;
- }
- static const_pointer_type getImpl(const repr_type& x) {
- return &x;
- }
- };
- } // namespace c10
- namespace at {
- inline c10::MaybeOwned<Tensor> borrow_from_optional_tensor(
- const c10::optional<Tensor>& opt) {
- return opt.has_value()
- ? c10::MaybeOwned<Tensor>::borrowed(*opt)
- : c10::MaybeOwned<Tensor>::owned(c10::in_place);
- }
- inline c10::MaybeOwned<Tensor> Tensor::expect_contiguous(MemoryFormat memory_format) const & {
- if (is_contiguous(memory_format)) {
- return c10::MaybeOwned<Tensor>::borrowed(*this);
- } else {
- return c10::MaybeOwned<Tensor>::owned(__dispatch_contiguous(memory_format));
- }
- }
- } // namespace at
|