| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 | 
							- #pragma once
 
- // ${generated_comment}
 
- #ifdef TORCH_ASSERT_NO_OPERATORS
 
- #error This change adds a dependency on native_functions.yaml,            \
 
-   meaning the file will need to be re-compiled every time an operator     \
 
-   is changed or added. Consider if your change would be better placed in  \
 
-   another file, or if a more specific header might achieve the same goal. \
 
-   See NOTE: [Tensor vs. TensorBase]
 
- #endif
 
- #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
 
- #error This change adds a dependency on all pytorch operators, meaning the     \
 
-   file will need to be re-compiled every time an operator is changed or added. \
 
-   Consider including a specific operator from <ATen/ops/{my_operator}.h> and   \
 
-   see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
 
- #endif
 
- // NOTE: [TORCH_ASSERT_ONLY_METHOD_OPERATORS]
 
- //
 
- // In ATen, certain generated headers files include the definitions of
 
- // every single operator in PyTorch. Unfortunately this means every
 
- // time an operator signature is updated or changed in
 
- // native_functions.yaml, you (and every other PyTorch developer) need
 
- // to recompile every source file that includes any of these headers.
 
- //
 
- // To break up these header dependencies, and improve incremental
 
- // build times for all PyTorch developers. These headers are split
 
- // into per-operator headers in the `ATen/ops` folder. This limits
 
- // incremental builds to only changes to methods of `Tensor`, or files
 
- // that use the specific operator being changed. With `at::sum` as an
 
- // example, you should include
 
- //
 
- //   <ATen/ops/sum.h>               // instead of ATen/Functions.h
 
- //   <ATen/ops/sum_native.h>        // instead of ATen/NativeFunctions.h
 
- //   <ATen/ops/sum_ops.h>           // instead of ATen/Operators.h
 
- //   <ATen/ops/sum_cpu_dispatch.h>  // instead of ATen/CPUFunctions.h
 
- //
 
- // However, even if you're careful to use this in your own code.
 
- // `Functions.h` might be included indirectly through another header
 
- // without you realising. To avoid this, you can add
 
- //
 
- //   #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
 
- //
 
- // to the top of your source file. This way any time the non-specific
 
- // headers are included, the compiler will error out.
 
- //
 
- // Also, be aware that `ops` are not available in all build
 
- // configurations (namely fb-internal) so you must guard these
 
- // includes with `#ifdef AT_PER_OPERATOR_HEADERS`. e.g.
 
- //
 
- //   #ifndef AT_PER_OPERATOR_HEADERS
 
- //   #include <ATen/Functions.h>
 
- //   #else
 
- //   #include <ATen/ops/sum.h>
 
- //   #endif
 
- #include <ATen/Context.h>
 
- #include <ATen/DeviceGuard.h>
 
- #include <ATen/TensorUtils.h>
 
- #include <ATen/TracerMode.h>
 
- #include <ATen/core/Generator.h>
 
- #include <ATen/core/Reduction.h>
 
- #include <c10/core/SymInt.h>
 
- #include <ATen/core/Tensor.h>
 
- #include <c10/core/Scalar.h>
 
- #include <c10/core/Storage.h>
 
- #include <c10/core/TensorOptions.h>
 
- #include <c10/util/Deprecated.h>
 
- #include <c10/util/Optional.h>
 
- #include <c10/util/OptionalArrayRef.h>
 
- #include <ATen/ops/from_blob.h>
 
- #include <ATen/ops/tensor.h>
 
- ${Functions_includes}
 
- namespace at {
 
- ${Functions_declarations}
 
- // Special C++ only overloads for std()-like functions (See gh-40287)
 
- // These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
 
- // So, for example std(0) would select the std(unbiased=False) overload
 
- TORCH_API inline Tensor var(const Tensor& self, int dim) {
 
-   return at::var(self, IntArrayRef{dim});
 
- }
 
- TORCH_API inline std::tuple<Tensor, Tensor> var_mean(const Tensor& self, int dim) {
 
-   return at::var_mean(self, IntArrayRef{dim});
 
- }
 
- TORCH_API inline Tensor std(const Tensor& self, int dim) {
 
-   return at::std(self, IntArrayRef{dim});
 
- }
 
- TORCH_API inline std::tuple<Tensor, Tensor> std_mean(const Tensor& self, int dim) {
 
-   return at::std_mean(self, IntArrayRef{dim});
 
- }
 
- inline int64_t numel(const Tensor& tensor) {
 
-   return tensor.numel();
 
- }
 
- inline int64_t size(const Tensor& tensor, int64_t dim) {
 
-   return tensor.size(dim);
 
- }
 
- inline int64_t stride(const Tensor& tensor, int64_t dim) {
 
-   return tensor.stride(dim);
 
- }
 
- inline bool is_complex(const Tensor& tensor) {
 
-   return tensor.is_complex();
 
- }
 
- inline bool is_floating_point(const Tensor& tensor) {
 
-   return tensor.is_floating_point();
 
- }
 
- inline bool is_signed(const Tensor& tensor) {
 
-   return tensor.is_signed();
 
- }
 
- inline bool is_inference(const Tensor& tensor) {
 
-   return tensor.is_inference();
 
- }
 
- inline bool _is_zerotensor(const Tensor& tensor) {
 
-   return tensor._is_zerotensor();
 
- }
 
- inline bool is_conj(const Tensor& tensor) {
 
-   return tensor.is_conj();
 
- }
 
- inline Tensor conj(const Tensor& tensor) {
 
-   return tensor.conj();
 
- }
 
- inline bool is_neg(const Tensor& tensor) {
 
-   return tensor.is_neg();
 
- }
 
- }
 
 
  |