123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- from typing import List, Optional
- from torchgen.api import dispatcher
- from torchgen.api.types import (
- BaseCType,
- Binding,
- boolT,
- ConstRefCType,
- CType,
- longT,
- NamedCType,
- tensorT,
- )
- from torchgen.model import (
- Argument,
- BaseTy,
- BaseType,
- FunctionSchema,
- NativeFunctionsViewGroup,
- )
- # This file describes the translation of JIT schema to API's used
- # when creating view lambdas that are used by the functionalization pass.
- # There are two types of lambdas: forward lambdas and reverse lambdas.
- # These API's mostly follow the dispatcher API, with a few quirks:
- # - The lambda capture has to convert reference types to value types
- # - While the forward lambda just directly calls into the at::_ops API
- # (following the dispatcher convention), the logic here for the reverse lambda
- # is responsible for generating both the call-site, and the declarations
- # (which are implemented manually in the at::functionalization::impl namespace).
- # The lambdas generated for each view op in the functionalization pass are of the form
- # [capture_arguments](outer_arguments) -> returns_type {
- # return name(inner_arguments);
- # }
- # Define some specific lambda input arguments.
- base_binding = Binding(
- name="base",
- nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))),
- argument=Argument(
- name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
- ),
- default=None,
- )
- mutated_view_binding = Binding(
- name="mutated_view",
- nctype=NamedCType(name="mutated_view", type=ConstRefCType(BaseCType(tensorT))),
- argument=Argument(
- name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
- ),
- default=None,
- )
- mutated_view_idx_binding = Binding(
- name="mutated_view_idx",
- nctype=NamedCType(name="mutated_view_idx", type=BaseCType(longT)),
- argument=Argument(
- name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
- ),
- default=None,
- )
- reapply_views_binding = Binding(
- name="reapply_views",
- nctype=NamedCType(name="reapply_views", type=BaseCType(boolT)),
- argument=Argument(
- name="reapply_views", type=BaseType(BaseTy.bool), default=None, annotation=None
- ),
- default=None,
- )
- # The lambda capture itself doesn't have a name.
- # The name returned here corresponds to the name of the inner function called by the lambda.
- def name(
- g: NativeFunctionsViewGroup,
- *,
- is_reverse: bool,
- include_namespace: bool,
- reapply_views: Optional[bool] = None,
- ) -> str:
- if reapply_views is None:
- # reapply_views is only important for the fwd lambda,
- # since we always plumb the runtime "reapply_views" argument into the reverse function.
- assert is_reverse
- if is_reverse:
- # for the reverse: the name of the inverse function always involves "view_copy",
- # and we plumb the "reapply_views" flag into that function.
- # (We could avoid doing that, but that would require writing out twice as many view inverse functions).
- assert g.view_copy is not None
- api_name = g.view_copy.func.name.unambiguous_name()
- # in the reverse case, we codegen both the call-sites (which need the full namespace) and the declarations (which don't)
- if include_namespace:
- return f"at::functionalization::FunctionalInverses::{api_name}_inverse"
- else:
- return f"{api_name}_inverse"
- # in the forward case, we just directly call into the at::_ops API (so we always need the namespace)
- assert include_namespace
- assert g.view_copy is not None
- api_name = (
- g.view.func.name.unambiguous_name()
- if reapply_views
- else g.view_copy.func.name.unambiguous_name()
- )
- return f"at::_ops::{api_name}::call"
- def capture_arguments(func: FunctionSchema, *, is_reverse: bool) -> List[Binding]:
- # capture arguments include all arguments except `self`.
- # Importantly, they don't include any C++ reference types (or else we'll get a dangling reference in the capture),
- # So any reference types (IntArrayRef) need to be converted to value types (vector<int64_t>)
- args = func.arguments.flat_all
- assert args[0].type == BaseType(BaseTy.Tensor)
- non_self_args = args[1:]
- non_self_value_bindings = [
- dispatcher.argument(a, remove_non_owning_ref_types=True) for a in non_self_args
- ]
- all_bindings = [reapply_views_binding] + non_self_value_bindings
- return all_bindings
- def returns_type(func: FunctionSchema) -> CType:
- # Assertion: all view ops return tensor-like outputs
- assert len(func.returns) >= 1
- for ret in func.returns:
- assert ret.type.is_tensor_like()
- # However, the return type of the lambda is always an individual tensor.
- # For multi-tensor outputs, each tensor needs to be tracked individually.
- return BaseCType(tensorT)
- def outer_arguments(*, is_reverse: bool) -> List[Binding]:
- if is_reverse:
- return [base_binding, mutated_view_binding, mutated_view_idx_binding]
- else:
- return [base_binding, mutated_view_idx_binding]
- def inner_call_index(func: FunctionSchema) -> Optional[Binding]:
- # For view ops that return multiple tensors (like `split`), we generate a separate lambda for each output.
- # When we replay a view op that returns multiple tensors, we need to index into the output appropriately
- if len(func.returns) > 1 or (
- len(func.returns) == 1 and func.returns[0].type.is_list_like()
- ):
- return mutated_view_idx_binding
- return None
- def inner_arguments(func: FunctionSchema, is_reverse: bool) -> List[Binding]:
- args = func.arguments.flat_all
- assert args[0].type == BaseType(BaseTy.Tensor)
- non_self_args = args[1:]
- # The forward lambda calls the at::_ops API, while the reverse lambda calls the view inverse API.
- # Both of these follow the dispatcher API.
- non_self_bindings = [dispatcher.argument(a) for a in non_self_args]
- if not is_reverse:
- # the forward lambda swaps out the original tensor argument with the lambd arg "base"
- return [base_binding] + non_self_bindings
- else:
- # the reverse lambda does the same, but with an additional "mutated_view" arg
- # additionally, we have a calling convention: for view ops that return multiple tensor outputs
- # their corresponding view_inverse function takes in an additional index argument.
- index_binding = inner_call_index(func)
- if index_binding is not None:
- return [
- base_binding,
- mutated_view_binding,
- reapply_views_binding,
- index_binding,
- ] + non_self_bindings
- else:
- return [
- base_binding,
- mutated_view_binding,
- reapply_views_binding,
- ] + non_self_bindings
|