123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- import numpy as np
- # Functions for converting
- def figure_to_image(figures, close=True):
- """Render matplotlib figure to numpy format.
- Note that this requires the ``matplotlib`` package.
- Args:
- figures (matplotlib.pyplot.figure or list of figures): figure or a list of figures
- close (bool): Flag to automatically close the figure
- Returns:
- numpy.array: image in [CHW] order
- """
- import matplotlib.pyplot as plt
- import matplotlib.backends.backend_agg as plt_backend_agg
- def render_to_rgb(figure):
- canvas = plt_backend_agg.FigureCanvasAgg(figure)
- canvas.draw()
- data = np.frombuffer(canvas.buffer_rgba(), dtype=np.uint8)
- w, h = figure.canvas.get_width_height()
- image_hwc = data.reshape([h, w, 4])[:, :, 0:3]
- image_chw = np.moveaxis(image_hwc, source=2, destination=0)
- if close:
- plt.close(figure)
- return image_chw
- if isinstance(figures, list):
- images = [render_to_rgb(figure) for figure in figures]
- return np.stack(images)
- else:
- image = render_to_rgb(figures)
- return image
- def _prepare_video(V):
- """
- Converts a 5D tensor [batchsize, time(frame), channel(color), height, width]
- into 4D tensor with dimension [time(frame), new_width, new_height, channel].
- A batch of images are spreaded to a grid, which forms a frame.
- e.g. Video with batchsize 16 will have a 4x4 grid.
- """
- b, t, c, h, w = V.shape
- if V.dtype == np.uint8:
- V = np.float32(V) / 255.0
- def is_power2(num):
- return num != 0 and ((num & (num - 1)) == 0)
- # pad to nearest power of 2, all at once
- if not is_power2(V.shape[0]):
- len_addition = int(2 ** V.shape[0].bit_length() - V.shape[0])
- V = np.concatenate((V, np.zeros(shape=(len_addition, t, c, h, w))), axis=0)
- n_rows = 2 ** ((b.bit_length() - 1) // 2)
- n_cols = V.shape[0] // n_rows
- V = np.reshape(V, newshape=(n_rows, n_cols, t, c, h, w))
- V = np.transpose(V, axes=(2, 0, 4, 1, 5, 3))
- V = np.reshape(V, newshape=(t, n_rows * h, n_cols * w, c))
- return V
- def make_grid(I, ncols=8):
- # I: N1HW or N3HW
- assert isinstance(I, np.ndarray), "plugin error, should pass numpy array here"
- if I.shape[1] == 1:
- I = np.concatenate([I, I, I], 1)
- assert I.ndim == 4 and I.shape[1] == 3
- nimg = I.shape[0]
- H = I.shape[2]
- W = I.shape[3]
- ncols = min(nimg, ncols)
- nrows = int(np.ceil(float(nimg) / ncols))
- canvas = np.zeros((3, H * nrows, W * ncols), dtype=I.dtype)
- i = 0
- for y in range(nrows):
- for x in range(ncols):
- if i >= nimg:
- break
- canvas[:, y * H : (y + 1) * H, x * W : (x + 1) * W] = I[i]
- i = i + 1
- return canvas
- # if modality == 'IMG':
- # if x.dtype == np.uint8:
- # x = x.astype(np.float32) / 255.0
- def convert_to_HWC(tensor, input_format): # tensor: numpy array
- assert len(set(input_format)) == len(
- input_format
- ), "You can not use the same dimension shordhand twice. \
- input_format: {}".format(
- input_format
- )
- assert len(tensor.shape) == len(
- input_format
- ), "size of input tensor and input format are different. \
- tensor shape: {}, input_format: {}".format(
- tensor.shape, input_format
- )
- input_format = input_format.upper()
- if len(input_format) == 4:
- index = [input_format.find(c) for c in "NCHW"]
- tensor_NCHW = tensor.transpose(index)
- tensor_CHW = make_grid(tensor_NCHW)
- return tensor_CHW.transpose(1, 2, 0)
- if len(input_format) == 3:
- index = [input_format.find(c) for c in "HWC"]
- tensor_HWC = tensor.transpose(index)
- if tensor_HWC.shape[2] == 1:
- tensor_HWC = np.concatenate([tensor_HWC, tensor_HWC, tensor_HWC], 2)
- return tensor_HWC
- if len(input_format) == 2:
- index = [input_format.find(c) for c in "HW"]
- tensor = tensor.transpose(index)
- tensor = np.stack([tensor, tensor, tensor], 2)
- return tensor
|