end_to_end.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. # -*- coding: utf-8 -*-
  2. """End-to-end example to test a PR for regressions:
  3. $ python -m examples.end_to_end --pr 39850
  4. $ python -m examples.end_to_end --pr 39967
  5. $ python -m examples.end_to_end --pr 39744
  6. NOTE:
  7. This example assumes that you have and environment prefixed with
  8. `ref_`, and another prefixed with `pr_` for the PR
  9. in question. (e.g. `ref_39850` and `pr_39850`).
  10. A helper script (examples/prepare_e2e.sh) is provided to build
  11. the required environments with the correct configuration.
  12. """
  13. import argparse
  14. import itertools as it
  15. import multiprocessing
  16. import multiprocessing.dummy
  17. import os
  18. import pickle
  19. import queue
  20. import subprocess
  21. import tempfile
  22. import textwrap
  23. import numpy as np
  24. import torch
  25. from torch.utils.benchmark.op_fuzzers import unary
  26. from torch.utils.benchmark import Timer, Measurement
  27. from typing import Dict, Tuple, List
  28. _MAIN, _SUBPROCESS = "main", "subprocess"
  29. _PR_ENV_TEMPLATE = "pr_{pr}"
  30. _REF_ENV_TEMPLATE = "ref_{pr}"
  31. _PR_LIST = (
  32. # Optimize topk performance for tensor with a large dimension size
  33. "39850",
  34. # Migrate `var` & `std` to ATen
  35. "39967",
  36. # Introducing (Const)StridedRandomAccessor + CompositeRandomAccessor + migrate `sort` to ATen (CPU)
  37. "39744",
  38. )
  39. _CPU, _GPU = "cpu", "gpu"
  40. _MIN_RUN_SEC = 1
  41. _REPLICATES = {
  42. _CPU: 5, # CPU has a higher variance.
  43. _GPU: 1,
  44. }
  45. _RUNS_PER_LOOP = 3
  46. _NUM_LOOPS = {
  47. _CPU: 32,
  48. _GPU: 64,
  49. }
  50. _DEVICES_TO_TEST = {
  51. "39850": {_CPU: False, _GPU: True},
  52. "39967": {_CPU: True, _GPU: True},
  53. "39744": {_CPU: True, _GPU: True},
  54. }
  55. _AVAILABLE_GPUS = queue.Queue[int]()
  56. _DTYPES_TO_TEST = {
  57. "39850": ("int8", "float32", "float64"),
  58. "39967": ("float32", "float64"),
  59. "39744": ("int8", "float32", "float64"),
  60. }
  61. _DTYPE_STR_TO_DTYPE = {
  62. "float64": torch.float64,
  63. "float32": torch.float32,
  64. "int8": torch.int8,
  65. }
  66. def parse_args():
  67. parser = argparse.ArgumentParser()
  68. parser.add_argument("--pr", type=str, default=_PR_LIST[0], choices=_PR_LIST)
  69. parser.add_argument("--num-gpus", "--num_gpus", type=int, default=None)
  70. parser.add_argument("--test-variance", "--test_variance", action="store_true")
  71. # (Implementation details)
  72. parser.add_argument("--DETAIL-context", "--DETAIL_context", type=str, choices=(_MAIN, _SUBPROCESS), default=_MAIN)
  73. parser.add_argument("--DETAIL-device", "--DETAIL_device", type=str, choices=(_CPU, _GPU), default=None)
  74. parser.add_argument("--DETAIL-env", "--DETAIL_env", type=str, default=None)
  75. parser.add_argument("--DETAIL-result-file", "--DETAIL_result_file", type=str, default=None)
  76. parser.add_argument("--DETAIL-seed", "--DETAIL_seed", type=int, default=None)
  77. args = parser.parse_args()
  78. if args.num_gpus is None:
  79. args.num_gpus = torch.cuda.device_count()
  80. return args
  81. _SUBPROCESS_CMD_TEMPLATE = (
  82. "source activate {source_env} && python -m examples.end_to_end "
  83. "--pr {pr} "
  84. "--DETAIL-context subprocess "
  85. "--DETAIL-device {device} "
  86. "--DETAIL-env {env} "
  87. "--DETAIL-result-file {result_file} "
  88. "--DETAIL-seed {seed}"
  89. )
  90. def construct_stmt_and_label(pr, params):
  91. if pr == "39850":
  92. k0, k1, k2, dim = [params[i] for i in ["k0", "k1", "k2", "dim"]]
  93. state = np.random.RandomState(params["random_value"])
  94. topk_dim = state.randint(low=0, high=dim)
  95. dim_size = [k0, k1, k2][topk_dim]
  96. k = max(int(np.floor(2 ** state.uniform(low=0, high=np.log2(dim_size)))), 1)
  97. return f"torch.topk(x, dim={topk_dim}, k={k})", "topk"
  98. if pr == "39967":
  99. return "torch.std(x)", "std"
  100. if pr == "39744":
  101. state = np.random.RandomState(params["random_value"])
  102. sort_dim = state.randint(low=0, high=params["dim"])
  103. return f"torch.sort(x, dim={sort_dim})", "sort"
  104. raise ValueError("Unknown PR")
  105. def subprocess_main(args):
  106. seed = args.DETAIL_seed
  107. cuda = (args.DETAIL_device == _GPU)
  108. with open(args.DETAIL_result_file, "ab") as f:
  109. for dtype_str in _DTYPES_TO_TEST[args.pr]:
  110. dtype = _DTYPE_STR_TO_DTYPE[dtype_str]
  111. iterator = unary.UnaryOpFuzzer(
  112. seed=seed, dtype=dtype, cuda=cuda).take(_RUNS_PER_LOOP)
  113. for i, (tensors, tensor_parameters, params) in enumerate(iterator):
  114. params["dtype_str"] = dtype_str
  115. stmt, label = construct_stmt_and_label(args.pr, params)
  116. timer = Timer(
  117. stmt=stmt,
  118. globals=tensors,
  119. label=label,
  120. description=f"[{i}, seed={seed}] ({dtype_str}), stmt = {stmt}",
  121. env=args.DETAIL_env,
  122. )
  123. measurement = timer.blocked_autorange(min_run_time=_MIN_RUN_SEC)
  124. measurement.metadata = {
  125. "tensor_parameters": tensor_parameters,
  126. "params": params,
  127. }
  128. print(measurement)
  129. pickle.dump(measurement, f)
  130. def _main(args):
  131. pools, map_iters, finished_counts = {}, {}, {}
  132. pr = args.pr
  133. envs = (_REF_ENV_TEMPLATE.format(pr=pr), _PR_ENV_TEMPLATE.format(pr=pr))
  134. # We initialize both pools at the start so that they run simultaneously
  135. # if applicable
  136. if _DEVICES_TO_TEST[args.pr][_GPU]:
  137. finished_counts[_GPU] = 0
  138. for i in range(args.num_gpus):
  139. _AVAILABLE_GPUS.put(i)
  140. pools[_GPU] = multiprocessing.dummy.Pool(args.num_gpus)
  141. trials = [
  142. (seed, envs, pr, True, finished_counts, args.test_variance)
  143. for seed in range(_NUM_LOOPS[_GPU])] * _REPLICATES[_GPU]
  144. map_iters[_GPU] = pools[_GPU].imap(map_fn, trials)
  145. if _DEVICES_TO_TEST[args.pr][_CPU]:
  146. finished_counts[_CPU] = 0
  147. cpu_workers = int(multiprocessing.cpu_count() / 3)
  148. pools[_CPU] = multiprocessing.dummy.Pool(cpu_workers)
  149. trials = [
  150. (seed, envs, pr, False, finished_counts, args.test_variance)
  151. for seed in range(_NUM_LOOPS[_CPU])] * _REPLICATES[_CPU]
  152. map_iters[_CPU] = pools[_CPU].imap(map_fn, trials)
  153. results = []
  154. for map_iter in map_iters.values():
  155. for r in map_iter:
  156. results.append(r)
  157. progress = [
  158. f"{k}: {v} / {_NUM_LOOPS[k] * _REPLICATES[k]}"
  159. for k, v in finished_counts.items()]
  160. print(f"\r{(' ' * 10).join(progress)}", end="")
  161. print()
  162. for pool in pools.values():
  163. pool.close()
  164. process_results(results, args.test_variance)
  165. # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
  166. # == Data processing and string formatting ====================================
  167. # /////////////////////////////////////////////////////////////////////////////
  168. def merge(measurements):
  169. if not measurements:
  170. return None
  171. states = [m.__getstate__() for m in measurements]
  172. for k in states[0].keys():
  173. if k in ("number_per_run", "times", "metadata"):
  174. continue
  175. assert all(s[k] == states[0][k] for s in states)
  176. numbers_per_run = {m.number_per_run for m in measurements}
  177. n = numbers_per_run.pop() if len(numbers_per_run) == 1 else 1
  178. merged_state = states[0]
  179. times = [[t / m.number_per_run * n for t in m.times] for m in measurements]
  180. merged_state["times"] = list(it.chain(*times))
  181. merged_state["number_per_run"] = n
  182. merged_state["metadata"] = states[0]["metadata"]
  183. return Measurement(**merged_state)
  184. def process_results(results, test_variance):
  185. paired_results: Dict[Tuple[str, str, int, bool, int], List] = {}
  186. for (seed, use_gpu), result_batch in results:
  187. for r in result_batch:
  188. key = (r.label, r.description, r.num_threads, use_gpu, seed)
  189. paired_results.setdefault(key, [[], []])
  190. index = 0 if r.env.startswith("ref") else 1
  191. paired_results[key][index].append(r)
  192. paired_results = {
  193. key: [merge(r_ref_list), merge(r_pr_list)]
  194. for key, (r_ref_list, r_pr_list) in paired_results.items()
  195. }
  196. flagged_for_removal = set()
  197. for key, (r_ref, r_pr) in paired_results.items():
  198. if any(r is None or r.has_warnings for r in (r_ref, r_pr)):
  199. flagged_for_removal.add(key)
  200. paired_results = {
  201. k: v for k, v in paired_results.items()
  202. if k not in flagged_for_removal
  203. }
  204. print(f"{len(flagged_for_removal)} samples were culled, {len(paired_results)} remain")
  205. gpu_results = [(k, v) for k, v in paired_results.items() if k[3]]
  206. cpu_results = [(k, v) for k, v in paired_results.items() if not k[3]]
  207. if cpu_results:
  208. construct_table(cpu_results, "CPU", test_variance)
  209. if gpu_results:
  210. construct_table(gpu_results, "GPU", test_variance)
  211. def construct_table(results, device_str, test_variance):
  212. device_str = f"== {device_str} {' (Variance Test)' if test_variance else ''} ".ljust(40, "=")
  213. print(f"{'=' * 40}\n{device_str}\n{'=' * 40}\n")
  214. results = sorted((
  215. (key, (r_ref, r_pr), r_pr.median / r_ref.median - 1)
  216. for key, (r_ref, r_pr) in results
  217. ), key=lambda i: i[2])
  218. n = len(results)
  219. n_regressed = len([i for i in results if i[2] > 0.05])
  220. n_improved = len([i for i in results if i[2] < -0.05])
  221. n_unchanged = n - n_improved - n_regressed
  222. legends = ["Improved (>5%):", "Regressed (>5%):", "Within 5%:"]
  223. for legend, count in zip(legends, [n_improved, n_regressed, n_unchanged]):
  224. print(f"{legend:<17} {count:>6} ({count / len(results) * 100:>3.0f}%)")
  225. keys_to_print = (
  226. {i[0] for i in results[20:30]} |
  227. {i[0] for i in results[int(n // 2 - 5):int(n // 2 + 5)]} |
  228. {i[0] for i in results[-30:-20]}
  229. )
  230. ellipsis_after = {results[29][0], results[int(n // 2 + 4)][0]}
  231. column_labels = (
  232. f"Relative Δ Absolute Δ | numel{'':>8}dtype{'':>14}"
  233. f"shape{'':>10}steps{'':>10}layout{'':>7}task specific\n{'=' * 126}"
  234. )
  235. _, result_log_file = tempfile.mkstemp(suffix=".log")
  236. with open(result_log_file, "wt") as f:
  237. f.write(f"{device_str}\n\n{column_labels}\n")
  238. print(f"\n{column_labels}\n[First twenty omitted (these tend to be noisy) ]")
  239. for key, (r_ref, r_pr), rel_diff in results:
  240. row = row_str(rel_diff, r_pr.median - r_ref.median, r_ref)
  241. f.write(f"{row}\n")
  242. if key in keys_to_print:
  243. print(row)
  244. if key in ellipsis_after:
  245. print("...")
  246. print("[Last twenty omitted (these tend to be noisy) ]")
  247. print(textwrap.dedent("""
  248. steps:
  249. Indicates that `x` is sliced from a larger Tensor. For instance, if
  250. shape is [12, 4] and steps are [2, 1], then a larger Tensor of size
  251. [24, 4] was created, and then x = base_tensor[::2, ::1]. Omitted if
  252. all elements are ones.
  253. layout:
  254. Indicates that `x` is not contiguous due to permutation. Invoking
  255. `x.permute(layout)` (e.g. x.permute((2, 0, 1)) if layout = [2, 0, 1])
  256. would produce a Tensor with physical memory layout matching logical
  257. memory layout. (Though still not contiguous if `steps` contains
  258. non-one elements.)
  259. """))
  260. print(f"\nComplete results in: {result_log_file}")
  261. def row_str(rel_diff, diff_seconds, measurement):
  262. params = measurement.metadata["params"]
  263. tensor_parameters = measurement.metadata["tensor_parameters"]
  264. dim = params["dim"]
  265. x_numel = tensor_parameters["x"]["numel"]
  266. steps = [params[f"x_step_{i}"] for i in range(dim)]
  267. order = tensor_parameters['x']["order"]
  268. order = str("" if all(i == j for i, j in zip(order, range(dim))) else order)
  269. task_specific = ""
  270. if measurement.stmt.startswith("torch.topk"):
  271. dim_str, k_str = measurement.stmt[:-1].replace("torch.topk(x, ", "").split(", ")
  272. task_specific = f"{dim_str}, {k_str:<8}"
  273. elif measurement.stmt.startswith("torch.std"):
  274. pass
  275. elif measurement.stmt.startswith("torch.sort"):
  276. task_specific = measurement.stmt[:-1].replace("torch.sort(x, ", "")
  277. return (
  278. f"{rel_diff * 100:>5.0f}% {abs(diff_seconds) * 1e6:>11.1f} us{'':>6}|"
  279. f"{x_numel:>12} {params['dtype_str']:>10} "
  280. f"{str([params[f'k{i}'] for i in range(dim)]):>17} "
  281. f"{str(steps) if not all(i == 1 for i in steps) else '':>12} {order:>12}"
  282. f"{'':>8}{task_specific}"
  283. )
  284. # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
  285. # == Subprocess and environment management ====================================
  286. # /////////////////////////////////////////////////////////////////////////////
  287. def read_results(result_file: str):
  288. output = []
  289. with open(result_file, "rb") as f:
  290. while True:
  291. try:
  292. output.append(pickle.load(f))
  293. except EOFError:
  294. break
  295. return output
  296. def run(cmd, cuda_visible_devices=""):
  297. return subprocess.run(
  298. cmd,
  299. env={
  300. "CUDA_VISIBLE_DEVICES": str(cuda_visible_devices),
  301. "PATH": os.getenv("PATH", ""),
  302. },
  303. stdout=subprocess.PIPE,
  304. shell=True
  305. )
  306. def test_source(envs):
  307. """Ensure that subprocess"""
  308. for env in envs:
  309. result = run(f"source activate {env}")
  310. if result.returncode != 0:
  311. raise ValueError(f"Failed to source environment `{env}`")
  312. def map_fn(args):
  313. seed, envs, pr, use_gpu, finished_counts, test_variance = args
  314. gpu = _AVAILABLE_GPUS.get() if use_gpu else None
  315. try:
  316. _, result_file = tempfile.mkstemp(suffix=".pkl")
  317. for env in envs:
  318. cmd = _SUBPROCESS_CMD_TEMPLATE.format(
  319. source_env=envs[0] if test_variance else env,
  320. env=env, pr=pr, device=_GPU if use_gpu else _CPU,
  321. result_file=result_file, seed=seed,
  322. )
  323. run(cmd=cmd, cuda_visible_devices=gpu if use_gpu else "")
  324. finished_counts[_GPU if use_gpu else _CPU] += 1
  325. return (seed, use_gpu), read_results(result_file)
  326. except KeyboardInterrupt:
  327. pass # Handle ctrl-c gracefully.
  328. finally:
  329. if gpu is not None:
  330. _AVAILABLE_GPUS.put(gpu)
  331. if os.path.exists(result_file):
  332. os.remove(result_file)
  333. def main(args):
  334. test_source([
  335. _REF_ENV_TEMPLATE.format(pr=args.pr),
  336. _PR_ENV_TEMPLATE.format(pr=args.pr),
  337. ])
  338. _main(args)
  339. if __name__ == "__main__":
  340. args = parse_args()
  341. if args.DETAIL_context == "main":
  342. main(args)
  343. if args.DETAIL_context == "subprocess":
  344. try:
  345. subprocess_main(args)
  346. except KeyboardInterrupt:
  347. pass # Handle ctrl-c gracefully.