123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- import torch
- from torch.utils._pytree import tree_map
- from typing import Iterator, List
- import logging
- import contextlib
- import itertools
- from torch.utils._python_dispatch import TorchDispatchMode
- # How the chain of calls works for LoggingTensor:
- # 1. Call torch.sin
- # 2. Attempt __torch_function__. In LoggingTensor torch function is disabled so we bypass it entirely
- # 3. Enter dispatcher, wind your way through Autograd
- # 4. Hit Python dispatch key, call __torch_dispatch__
- # This Tensor can work with autograd in two ways:
- # - The wrapped Tensor does not require gradients. In that case, the LoggingTensor
- # can require gradients if the user asks for it as a constructor kwarg.
- # - The wrapped Tensor can require gradients. In that case autograd will be tracked
- # for the wrapped Tensor and the LoggingTensor itself cannot require gradients.
- # WARNING: We allow these two possibilities for testing purposes. You should NEVER use both in a single
- # test or you might get surprising behavior.
- # TODO: TensorBase should work
- class LoggingTensor(torch.Tensor):
- elem: torch.Tensor
- __slots__ = ['elem']
- context = contextlib.nullcontext
- __torch_function__ = torch._C._disabled_torch_function_impl
- @staticmethod
- def __new__(cls, elem, *args, **kwargs):
- # The wrapping tensor (LoggingTensor) shouldn't hold any
- # memory for the class in question, but it should still
- # advertise the same device as before
- r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
- cls, elem.size(),
- strides=elem.stride(), storage_offset=elem.storage_offset(),
- # TODO: clone storage aliasing
- dtype=elem.dtype, layout=elem.layout,
- device=elem.device, requires_grad=kwargs.get("requires_grad", False)
- )
- # ...the real tensor is held as an element on the tensor.
- r.elem = elem.detach() if r.requires_grad else elem
- return r
- def __repr__(self):
- return super().__repr__(tensor_contents=f"{self.elem}")
- @classmethod
- def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
- def unwrap(e):
- return e.elem if isinstance(e, cls) else e
- def wrap(e):
- return cls(e) if isinstance(e, torch.Tensor) else e
- with cls.context():
- rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
- logging.getLogger("LoggingTensor").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
- return rs
- class LoggingTensorMode(TorchDispatchMode):
- def __torch_dispatch__(self, func, types, args=(), kwargs=None):
- if kwargs is None:
- kwargs = {}
- rs = func(*args, **kwargs)
- logging.getLogger("LoggingTensor").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
- return rs
- class LoggingTensorReentrant(LoggingTensor):
- context = torch.overrides.enable_reentrant_dispatch
- # https://stackoverflow.com/questions/36408496/python-logging-handler-to-append-to-list
- class LoggingTensorHandler(logging.Handler):
- log_list: List[str]
- next_shortid: int
- def __init__(self, log_list: List[str], use_shortid_for_all_tensors: bool) -> None:
- logging.Handler.__init__(self)
- self.log_list = log_list
- self.next_shortid = 0
- self.use_shortid_for_all_tensors = use_shortid_for_all_tensors
- # WARNING: not deterministic over multiple threads, this matters for
- # autograd
- def _shortid(self, o: object) -> int:
- if not hasattr(o, '_shortid'):
- o._shortid = self.next_shortid # type: ignore[attr-defined]
- self.next_shortid += 1
- return o._shortid # type: ignore[attr-defined]
- def _fmt(self, a: object) -> str:
- cond_cls = torch.Tensor if self.use_shortid_for_all_tensors else LoggingTensor
- return f'${self._shortid(a)}' if isinstance(a, cond_cls) else repr(a)
- def emit(self, record):
- fmt_args = ", ".join(itertools.chain(
- (self._fmt(a) for a in record.args[0]),
- (f"{k}={self._fmt(v)}" for k, v in record.args[1].items())
- ))
- fmt_rets = ", ".join(self._fmt(a) for a in record.args[2]) \
- if isinstance(record.args[2], (list, tuple)) else self._fmt(record.args[2])
- self.log_list.append(f'{fmt_rets} = {record.msg}({fmt_args})')
- def log_input(name: str, var: object):
- logging.getLogger("LoggingTensor").info("input", (name,), {}, (var,))
- @contextlib.contextmanager
- def capture_logs(is_mode=False) -> Iterator[List[str]]:
- logger = logging.getLogger("LoggingTensor")
- log_list: List[str] = []
- handler = LoggingTensorHandler(log_list, use_shortid_for_all_tensors=is_mode)
- logger.addHandler(handler)
- logger.setLevel(logging.INFO)
- logger.propagate = False
- try:
- yield log_list
- finally:
- logger.removeHandler(handler)
- @contextlib.contextmanager
- def capture_logs_with_logging_tensor_mode():
- with LoggingTensorMode(), capture_logs(True) as logs:
- yield logs
|