123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722 |
- # Torch
- from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
- import torch.nn.functional as F
- import torch
- import torch.cuda
- import torch.jit
- import torch.jit._logging
- import torch.jit.frontend
- from torch.testing._internal.common_nn import module_tests, new_module_tests
- from torch.testing._internal.common_utils import is_iterable_of_tensors
- import collections
- from copy import deepcopy
- from typing import Any, Dict, List, Union
- import math # noqa: F401
- # Testing utils
- from torch import inf
- # TODO: include files like this should not set the default dtype
- torch.set_default_dtype(torch.double)
- L = 20
- M = 10
- S = 5
- def unpack_variables(args):
- if isinstance(args, tuple):
- return tuple(unpack_variables(elem) for elem in args)
- else:
- return args
- class dont_convert(tuple):
- pass
- non_differentiable = collections.namedtuple('non_differentiable', ['tensor'])
- def create_input(call_args, requires_grad=True, non_contiguous=False, call_kwargs=None, dtype=torch.double, device=None):
- if not isinstance(call_args, tuple):
- call_args = (call_args,)
- def map_arg(arg):
- def maybe_non_contig(tensor):
- if not non_contiguous or tensor.numel() < 2:
- return tensor.clone()
- return noncontiguous_like(tensor)
- def conjugate(tensor):
- return tensor.conj()
- if isinstance(arg, (torch.Size, dont_convert)):
- return arg
- elif isinstance(arg, tuple) and len(arg) == 0:
- var = conjugate(torch.randn((), dtype=dtype, device=device))
- var.requires_grad = requires_grad
- return var
- elif isinstance(arg, tuple) and not isinstance(arg[0], torch.Tensor):
- return conjugate(maybe_non_contig(torch.randn(*arg, dtype=dtype, device=device))).requires_grad_(requires_grad)
- # double check casting
- elif isinstance(arg, non_differentiable):
- if isinstance(arg.tensor, torch.Tensor):
- if arg.tensor.dtype == torch.float:
- return maybe_non_contig(arg.tensor.to(dtype=torch.double, device=device))
- if arg.tensor.dtype == torch.cfloat:
- return conjugate(maybe_non_contig(arg.tensor.to(dtype=torch.cdouble, device=device)))
- return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
- return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
- elif isinstance(arg, torch.Tensor):
- if arg.dtype == torch.float:
- arg = arg.double()
- if arg.dtype == torch.cfloat:
- arg = arg.to(torch.cdouble)
- if arg.is_complex() != dtype.is_complex:
- raise RuntimeError("User provided tensor is real for a test that runs with complex dtype, ",
- "which is not supported for now")
- # NOTE: We do clone() after detach() here because we need to be able to change size/storage of v afterwards
- v = conjugate(maybe_non_contig(arg)).detach().to(device=device).clone()
- v.requires_grad = requires_grad and (v.is_floating_point() or v.is_complex())
- return v
- elif callable(arg):
- return map_arg(arg(dtype=dtype, device=device))
- else:
- return arg
- args_out = tuple(map_arg(arg) for arg in call_args)
- kwargs_out = {k: map_arg(v) for k, v in call_kwargs.items()} if call_kwargs else {}
- return args_out, kwargs_out
- # NB: JIT script tests for all nn functional interfaces, script mode does
- # not support in_place operations yet, so no inplace operation tests added.
- # removed all the deprecated functions
- #
- # (
- # method name,
- # input size/constructing fn,
- # args (tuple represents shape of a tensor arg),
- # test variant name(will be used at test name suffix,
- # 'inplace' skips grad tests), // optional
- # (True, nonfusible_nodes, fusible_nodes) for autodiff // optional
- # fn to determine if test should be skipped, // optional
- # fn mapping output to part that should be gradcheck'ed, // optional
- # kwargs for function, // optional
- # )
- nn_functional_tests = [
- ('conv1d', (S, S, S), ((S, S, S),)),
- ('conv2d', (S, S, S, S), ((S, S, S, S),)),
- ('conv3d', (S, S, S, S, S), ((S, S, S, S, S),)),
- ('conv_transpose1d', (S, S, S), ((S, S, S),)),
- ('conv_transpose2d', (S, S, S, S), ((S, S, S, S),)),
- ('conv_transpose3d', (S, S, S, S, S), ((S, S, S, S, S),)),
- ('conv_tbc', (S, S, S), ((S, S, S), (S,), 2)),
- ('avg_pool1d', (S, S, S), (3,)),
- ('avg_pool2d', (S, S, S, S), (3,), '', (True,)),
- ('avg_pool3d', (S, S, S, S, S), (3,)),
- ('fractional_max_pool2d', (S, S, S, S), (3, [2, 3],)),
- ('max_pool1d', (S, S, S), (2, 1)),
- ('max_pool1d', (S, S, S), (2, 1, 1, 1, False, True), 'with_indices'),
- ('max_pool2d', (S, S, S, S), (2, 1), '', (True, 'aten::max_pool2d_with_indices')),
- ('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
- ('max_pool3d', (S, S, S, S, S), (2, 1)),
- ('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
- ('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
- ('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
- ('lp_pool1d', (S, S, S), (2., 3, 2,)),
- ('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
- ('adaptive_max_pool1d', (S, S, S), (5,)),
- ('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
- ('adaptive_max_pool3d', (S, S, S, S, S), ([3, 2, 2],)),
- ('adaptive_avg_pool1d', (S, S, S), (5,), '', (True,)),
- ('adaptive_avg_pool2d', (S, S, S, S), ([5, 7],), '', (True,)),
- ('adaptive_avg_pool3d', (S, S, S, S, S), ([3, 2, 2],), '', (True,)),
- ('dropout', (S, S, S), (0.5,), '', (True, 'aten::native_dropout')),
- ('alpha_dropout', (S, S, S), (0.5,)),
- ('dropout2d', (S, S, S), (0.5,)),
- ('dropout2d', (S, S, S, S), (0.5,), 'batched'),
- ('dropout3d', (S, S, S, S), (0.5,)),
- ('dropout3d', (S, S, S, S, S), (0.5,), 'batched'),
- ('feature_alpha_dropout', (S, S, S), (0.5,)),
- ('threshold', (S, S, S), (0.1, 2.), '', (True,)),
- ('threshold', (S, S, S), (0.1, 2., True), 'inplace'),
- ('relu', (S, S, S), (), '', (True,)),
- ('relu', (S, S, S), (), 'inplace'),
- ('glu', (S - 1, S - 1, S - 1), (),),
- ('hardtanh', (S, S, S), (-0.5, 0.5), '', (True,)),
- ('hardtanh', (S, S, S), (-0.5, 0.5, True), 'inplace'),
- ('relu6', (S, S, S), (), '', (True,)),
- ('relu6', (S, S, S), (True), 'inplace'),
- ('elu', (S, S, S), (0.9,),),
- ('elu', (S, S, S), (0.9, True), 'inplace'),
- ('selu', (S, S, S), (),),
- ('selu', (S, S, S), (True), 'inplace'),
- ('celu', (S, S, S), (0.9,),),
- ('celu', (S, S, S), (0.9, True), 'inplace'),
- ('leaky_relu', (S, S, S), (0.02,), '', (True,)),
- ('leaky_relu', (S, S, S), (0.02,), 'inplace'),
- ('rrelu', (S, S), (0.1, 0.3, False),),
- ('rrelu', (S, S), (0.1, 0.3, False, True), 'inplace'),
- ('hardshrink', (S, S, S), (0.4,), '', (True,)),
- ('tanhshrink', (S, S, S), (),),
- ('softsign', (S, S, S), (),),
- ('softplus', (S, S, S), (), '', (True,)),
- ('softmin', (S, S, S), (0,),),
- ('softmax', (S, S, S), (0,), '', (True,)),
- ('softmax', (S, S, S), (0, 3, torch.double), 'with_all_args', (True,)),
- ('tanh', (S, S, S), (), '', (True,)),
- ('sigmoid', (S, S, S), (), '', (True,)),
- ('silu', (S, S, S), (), '', (True,)),
- ('log_softmax', (S, S, S), (0,), '', (True,)),
- ('linear', (S, S), ((M, S),), '', (True, ['aten::linear'])),
- ('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::linear'])),
- ('bilinear', (S, S, S), ((S, S, M), torch.zeros(M, S, M),),),
- ('embedding', torch.tensor([[1, 2, 4, 5], [4, 3, 2, 5]]), (torch.rand(6, 3), ), '', (True,)),
- ('embedding_bag', torch.tensor([1, 2, 4, 2]), (torch.rand(5, 3), torch.tensor([0, 4]),),),
- ('batch_norm', (S, S),
- (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), None, None, True, ),
- 'training', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (0, S, S, S),
- (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
- 'size_zero', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (0, S, S, S),
- (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
- 'size_zero_inference', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (S, S),
- (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
- 'with_weight_and_bias_training', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- None, non_differentiable(torch.ones(S)), True, ),
- 'with_only_bias_training', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- non_differentiable(torch.randn(S)), None, True, ),
- 'with_only_weight_training', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- None, None, False, ),
- 'inference', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), False, ),
- 'with_weight_and_bias_inference', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- None, non_differentiable(torch.ones(S)), False, ),
- 'with_only_bias_inference', (True, 'aten::_batch_norm_impl_index')),
- ('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
- non_differentiable(torch.randn(S)), None, False, ),
- 'with_only_weight_inference', (True, 'aten::_batch_norm_impl_index')),
- ('instance_norm', (S, S, S), (non_differentiable(torch.zeros(S)), non_differentiable(torch.ones(S))),),
- ('layer_norm', (S, S, S, S), ([5],), '',
- (False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
- ('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),), 'with_only_weight',
- (False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
- ('layer_norm', (S, S, S, S), ([5], None, non_differentiable(torch.rand(S)),), 'with_only_bias',
- (False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
- ('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),
- non_differentiable(torch.rand(S))), 'with_weight_and_bias',
- (False, ['aten::contiguous', 'aten::_batch_norm_impl_index', 'aten::addcmul'])),
- ('group_norm', (S, S, S), (1, torch.rand(5),),),
- ('local_response_norm', (S, S, S), (2, ),),
- ('nll_loss', F.log_softmax(torch.randn(3, 5), dim=0), (torch.tensor([1, 0, 4]),), '',),
- ('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2),),),
- ('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2), True, True), 'full'),
- ('kl_div', F.log_softmax(torch.randn(S, 10), 1), (F.softmax(torch.randn(S, 10), 1),),),
- ('cross_entropy', (3, S), (torch.randint(S, (3,), dtype=torch.int64),),),
- ('binary_cross_entropy_with_logits', (3,), (torch.empty(3).random_(2), ),),
- ('smooth_l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
- ('huber_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
- ('l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
- ('mse_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
- ('smooth_l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
- ('huber_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
- ('l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
- ('mse_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
- ('margin_ranking_loss', (S,), ((S,), (S,)),),
- ('hinge_embedding_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
- ('soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
- ('multilabel_soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
- ('cosine_embedding_loss', (S, S), ((S, S), non_differentiable(torch.rand(S,))),),
- ('pixel_shuffle', (1, 9, 4, 4), (3,),),
- ('pixel_unshuffle', (1, 1, 12, 12), (3,),),
- ('affine_grid', (S, 2, 3), (torch.Size([S, 1, 7, 7]),),),
- ('pad', (3, 3, 4, 2), ([1, 1],),),
- ('pairwise_distance', (S, S), ((S, S),),),
- ('pdist', (S, S), (),),
- ('cosine_similarity', (S, S), ((S, S),),),
- ('triplet_margin_loss', (S, S), ((S, S), (S, S)),),
- ('normalize', (S, S, S), (),),
- ('unfold', (S, S, S, S), ([2, 3]),),
- ('fold', (1, 3 * 2 * 2, 12), ([4, 5], [2, 2]),),
- ('grid_sample', (S, S, S, S), (non_differentiable(torch.rand(S, S, S, 2)),),),
- ('gumbel_softmax', (S, S), (2.,), '', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
- ('gumbel_softmax', (S, S), (2., True,), 'hard', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
- ('multilabel_margin_loss', torch.tensor([[0.2, -0.2, 0.07]]), (torch.tensor([[0, 0, 1]]),),),
- ('multi_margin_loss', (S, S), (non_differentiable(torch.randint(S, (S, ), dtype=torch.int64)),
- 1, 1., non_differentiable(torch.randn(S))),),
- ('binary_cross_entropy', torch.randn(3, 2).sigmoid(), (non_differentiable(torch.rand(3, 2)),
- non_differentiable(torch.randn(3, 2))),),
- ('binary_cross_entropy', torch.randn(3, 2).sigmoid(),
- (non_differentiable(torch.rand(3, 2)),
- non_differentiable(torch.randn(3, 2)), None, None, 'mean'), 'size_average'),
- ('ctc_loss', torch.rand(S, S, S).log_softmax(2).detach().requires_grad_(),
- (torch.randint(1, S, (S, S), dtype=torch.long), torch.full((S,), S, dtype=torch.long),
- torch.randint(1, S, (S,), dtype=torch.long))),
- ('upsample', torch.randn(S, S, M, M), (None, 2.), 'with_scale'),
- ('upsample', torch.randn(S, S, M, M), (4,), 'with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'nearest_4d'),
- ('interpolate', torch.randn(S, S, M, M), (None, 2.), 'nearest_4d_with_scale'),
- ('interpolate', torch.randn(S, S, M, M), (4,), 'nearest_4d_with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'area_4d'),
- ('interpolate', torch.randn(S, S, M, M), (None, 2.), 'area_4d_with_scale'),
- ('interpolate', torch.randn(S, S, M, M), (4,), 'area_4d_with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bilinear_4d'),
- ('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bilinear_4d_with_scale'),
- ('interpolate', torch.randn(S, S, M, M), (4,), 'bilinear_4d_with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bicubic_4d'),
- ('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bicubic_4d_with_scale'),
- ('interpolate', torch.randn(S, S, M, M), (4,), 'bicubic_4d_with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'nearest_3d'),
- ('interpolate', torch.randn(S, M, M), (None, 2.), 'nearest_3d_with_scale'),
- ('interpolate', torch.randn(S, M, M), (4,), 'nearest_3d_with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'area_3d'),
- ('interpolate', torch.randn(S, M, M), (None, 2.), 'area_3d_with_scale'),
- ('interpolate', torch.randn(S, M, M), (4,), 'area_3d_with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'linear_3d'),
- ('interpolate', torch.randn(S, M, M), (None, 2.), 'linear_3d_with_scale'),
- ('interpolate', torch.randn(S, M, M), (4,), 'linear_3d_with_size'),
- ('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'nearest_5d_with_scale'),
- ('interpolate', torch.randn(S, M, M, M, M), (4,), 'nearest_5d_with_size'),
- ('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'area_5d'),
- ('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'area_5d_with_scale'),
- ('interpolate', torch.randn(S, M, M, M, M), (4,), 'area_5d_with_size'),
- ('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'trilinear_5d'),
- ('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'trilinear_5d_with_scale'),
- ('interpolate', torch.randn(S, M, M, M, M), (4,), 'trilinear_5d_with_size'),
- ('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2, None, 'nearest', None, False),
- 'nearest_4d_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, S, M, M), (4, None, 'nearest', None, False),
- 'nearest_4d_with_size_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, S, M, M), (None, 2., 'bilinear', None, False),
- 'bilinear_4d_with_scale_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, S, M, M), (4, None, 'bilinear', None, False),
- 'bilinear_4d_with_size_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, S, M, M), (None, 2., 'bicubic', None, False),
- 'bicubic_4d_with_scale_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, S, M, M), (4, None, 'bicubic', None, False),
- 'bicubic_4d_with_size_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M), (None, 2., 'nearest', None, False),
- 'nearest_3d_with_scale_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M), (4, None, 'nearest', None, False),
- 'nearest_3d_with_size_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M), (None, 2., 'linear', None, False),
- 'linear_3d_with_scale_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M), (4, None, 'linear', None, False),
- 'linear_3d_with_size_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'nearest', None, False),
- 'nearest_5d_with_scale_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M, M, M), (4, None, 'nearest', None, False),
- 'nearest_5d_with_size_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'trilinear', None, False),
- 'trilinear_5d_with_scale_not_recompute_scale_factor'),
- ('interpolate', torch.randn(S, M, M, M, M), (4, None, 'trilinear', None, False),
- 'trilinear_5d_with_size_not_recompute_scale_factor'),
- ]
- script_template = '''
- def the_method({}):
- return {}
- '''
- def value_to_literal(value):
- if isinstance(value, str):
- # Quotes string and escapes special characters
- return ascii(value)
- if isinstance(value, torch.Tensor):
- return 'torch.' + str(value)
- else:
- return str(value)
- def get_call(method_name, func_type, args, kwargs):
- kwargs_str = ', '.join([k + '=' + value_to_literal(v) for k, v in kwargs.items()])
- self_arg = args[0]
- if(func_type == 'method'):
- args = args[1:]
- argument_str = ', '.join(args)
- argument_str += ', ' if len(args) and len(kwargs) else ''
- argument_str += kwargs_str
- if func_type == 'functional' or func_type == 'function':
- call = 'torch.{}({})'.format(method_name, argument_str)
- elif func_type == 'method':
- call = '{}.{}({})'.format(self_arg, method_name, argument_str)
- elif func_type == 'nn_functional':
- call = 'torch.nn.functional.{}({})'.format(method_name, argument_str)
- else:
- raise TypeError('Unsupported function type')
- return call
- def get_constant(x):
- if x == inf:
- return 'math.inf'
- if x == -inf:
- return '-math.inf'
- return x
- def get_script_args(args):
- formals: List[str] = []
- tensors: List[Union[torch.Tensor, List[torch.Tensor]]] = []
- actuals: List[str] = []
- for arg in args:
- if isinstance(arg, torch.Tensor):
- name = 'i{}'.format(len(formals))
- formals.append(name)
- actuals.append(name)
- tensors.append(arg)
- elif is_iterable_of_tensors(arg):
- name = 'i{}'.format(len(formals))
- formals.append(name + ': List[torch.Tensor]')
- actuals.append(name)
- tensors.append(list(arg))
- elif isinstance(arg, str):
- actuals.append("'{}'".format(arg))
- else:
- actuals.append(str(get_constant(arg)))
- return (formals, tensors, actuals)
- # create a script function from (name, func_type, output_process_fn),
- # and returns the compiled function and example inputs
- def gen_script_fn_and_args(method_name, func_type, *args, **kwargs):
- formals, tensors, actuals = get_script_args(args)
- call = get_call(method_name, func_type, actuals, kwargs)
- script = script_template.format(', '.join(formals), call)
- CU = torch.jit.CompilationUnit(script)
- return CU.the_method, tensors
- # create a script function from (name, func_type),
- # returns a function takes in (args, kwargs) and runs the compiled function
- def create_script_fn(self, method_name, func_type):
- # function returns tuple containing original output and
- # filtered output to be used in checking gradients
- def script_fn(*args, **kwargs):
- fn, tensors = gen_script_fn_and_args(method_name, func_type, *args, **kwargs)
- self.assertExportImport(fn.graph, tensors)
- output = fn(*tensors)
- # skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
- script_fn.last_graph = fn.graph_for(*tensors) # type: ignore[attr-defined]
- return output
- return script_fn
- class SplitInputs():
- all_tensors: List[Any]
- tensor_args: List[Any]
- nontensor_args: List[Any]
- arg_types: List[str]
- tensor_kwargs: Dict[str, Any]
- kwarg_order: List[str]
- nontensor_kwargs: Dict[str, Any]
- kwarg_types: Dict[str, Any]
- @staticmethod
- def _is_tensor_input(arg):
- return isinstance(arg, torch.Tensor) or is_iterable_of_tensors(arg)
- def __init__(self, args, kwargs):
- self.arg_types = ['t' if self._is_tensor_input(arg) else 's' for arg in args]
- self.kwarg_types = {k: 't' if self._is_tensor_input(v) else 's' for k, v in kwargs.items()}
- self.tensor_args = [arg for arg in args if self._is_tensor_input(arg)]
- self.nontensor_args = [arg for arg in args if not self._is_tensor_input(arg)]
- self.tensor_kwargs = {k: v for k, v in kwargs.items() if self._is_tensor_input(v)}
- self.nontensor_kwargs = {k: v for k, v in kwargs.items() if not self._is_tensor_input(v)}
- self.all_tensors = [*self.tensor_args, *[v for k, v in self.tensor_kwargs.items()]]
- self.kwarg_order = [k for k, v in kwargs.items()]
- def nontensors_match(self, other: 'SplitInputs'):
- if self.arg_types != other.arg_types:
- return False
- if self.kwarg_types != other.kwarg_types:
- return False
- if self.kwarg_order != other.kwarg_order:
- return False
- if self.nontensor_args != other.nontensor_args:
- return False
- if self.nontensor_kwargs != other.nontensor_kwargs:
- return False
- return True
- # make a new function where all non-tensor arguments in 'args' have been partially
- # applied, and all tensor arguments remain.
- # used to trace functions when some arguments are not tensors
- def partial_apply_nontensors(fn, args, kwargs):
- inputs = SplitInputs(args, kwargs)
- def new_fn(*tensors_):
- tensors = iter(tensors_)
- full_args = [args[i] if s == 's' else next(tensors) for i, s in enumerate(inputs.arg_types)]
- full_kwargs = {k: kwargs[k] if s == 's' else next(tensors) for k, s in inputs.kwarg_types.items()}
- return fn(*full_args, **full_kwargs)
- return new_fn, inputs
- # create a trace function from input fn
- def create_traced_fn(self, fn, cache_traced_fn=False):
- def traced_fn(*inputs, **kwargs):
- # `check_trace` is set to False because check_trace is run with @no_grad
- # Also, `check_against_reference` already does all the checks
- # against python function
- fn_tensors, split_inputs = partial_apply_nontensors(fn, inputs, kwargs)
- if not cache_traced_fn or not hasattr(traced_fn, 'traced'):
- traced = torch.jit.trace(fn_tensors, split_inputs.all_tensors, check_trace=False)
- self.assertExportImport(traced.graph, split_inputs.all_tensors)
- output = traced(*split_inputs.all_tensors)
- if cache_traced_fn:
- traced_fn.traced = traced
- traced_fn.split_inputs = split_inputs
- else:
- # Guard to check that nontensor inputs are the same as during tracing
- self.assertTrue(traced_fn.split_inputs.nontensors_match(split_inputs))
- output = traced_fn.traced(*split_inputs.all_tensors)
- traced = traced_fn.traced
- # skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
- traced_fn.last_graph = traced.graph_for(*split_inputs.all_tensors) # type: ignore[attr-defined]
- traced_fn.graph = traced.graph # type: ignore[attr-defined]
- return output
- return traced_fn
- # known to be failing in script
- EXCLUDE_SCRIPT = {
- 'test_norm_fro_default',
- 'test_norm_fro_cpu',
- 'test_norm_nuc',
- 'test_norm_fro',
- 'test_norm_nuc_batched',
- # aten op has additional cudnn argument
- 'test_nn_unfold',
- # flaky test - TODO fix
- 'test_nn_ctc_loss',
- # unknown builtin op
- 'test_nn_fold',
- # jit doesn't support sparse tensors.
- 'test_to_sparse',
- 'test_to_sparse_dim',
- }
- # generates a script function and set of example inputs
- # from a specified test in the format of nn_functional_tests
- def get_nn_functional_compiled_fn_and_inputs(name, self_size, args, variant_name='', *extra_args):
- test_name = 'test_nn_' + name
- if variant_name != '':
- test_name = test_name + '_' + variant_name
- no_grad = variant_name == 'inplace'
- self_variable = create_input((self_size,))[0][0]
- kwargs = None
- # need to record this because methods can change the size (e.g. unsqueeze)
- args_variable, kwargs_variable = create_input(args)
- self_tensor = deepcopy(self_variable.data)
- args_tensor = deepcopy(unpack_variables(args_variable))
- f_args_variable = (self_variable,) + args_variable
- f_args_tensor = (self_tensor,) + args_tensor
- with torch._jit_internal._disable_emit_hooks():
- script_fn, inputs = gen_script_fn_and_args(name, "nn_functional", *f_args_variable)
- return script_fn, inputs
- # additional modules test
- # TODO: delete this list once we make all nn_tests work
- additional_module_tests = [
- {
- 'module_name': 'Bilinear',
- 'constructor_args': (S, S, M),
- 'input_size': (S, S),
- 'extra_args': ((S, S),)
- },
- {
- 'module_name': 'RNNCell',
- 'constructor_args': (S, S),
- 'input_size': (S, S),
- },
- {
- 'module_name': 'LSTMCell',
- 'constructor_args': (S, S),
- 'input_size': (S, S),
- },
- {
- 'module_name': 'GRUCell',
- 'constructor_args': (S, S),
- 'input_size': (S, S),
- },
- {
- 'module_name': 'MultiheadAttention',
- 'constructor_args': (128, 8),
- 'input_size': (10, 8, 128),
- 'extra_args': (torch.randn(10, 8, 128), torch.randn(10, 8, 128)),
- 'slowTest': True
- },
- {
- 'module_name': 'Transformer',
- 'constructor_args': (1, 1, 1, 1, 2),
- 'input_size': (3, 1, 1),
- 'extra_args': (torch.randn(1, 1, 1),),
- 'slowTest': True
- }
- ]
- EXCLUDE_SCRIPT_MODULES = {
- 'test_nn_AdaptiveAvgPool2d_tuple_none',
- 'test_nn_AdaptiveAvgPool3d_tuple_none',
- 'test_nn_AdaptiveMaxPool2d_tuple_none',
- 'test_nn_AdaptiveMaxPool3d_tuple_none',
- # Doesn't use future division, so this is not supported
- 'test_nn_CrossMapLRN2d',
- }
- script_method_template = '''
- def forward({}):
- return {}
- '''
- def create_script_module(self, nn_module, constructor_args, *args, **kwargs):
- def script_module(*args, **kwargs):
- formals, tensors, actuals = get_script_args(args)
- method_args = ', '.join(['self'] + actuals)
- call_args_str = ', '.join(actuals)
- call = "self.submodule({})".format(call_args_str)
- script = script_method_template.format(method_args, call)
- submodule_constants = []
- if kwargs.get('is_constant'):
- submodule_constants = ['submodule']
- # Create module to use the script method
- class TheModule(torch.jit.ScriptModule):
- __constants__ = submodule_constants
- def __init__(self):
- super().__init__()
- self.submodule = nn_module(*constructor_args)
- def make_module(script):
- module = TheModule()
- # check __repr__
- str(module)
- module.define(script)
- return module
- module = make_module(script)
- if self:
- self.assertExportImportModule(module, tensors)
- module(*args)
- # skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
- create_script_module.last_graph = module.graph # type: ignore[attr-defined]
- return module
- return script_module
- def check_alias_annotation(method_name, args, kwargs, *, aten_name, func_type='method'):
- formals, tensors, actuals = get_script_args(args)
- call = get_call(method_name, func_type, actuals, kwargs)
- script = script_template.format(', '.join(formals), call)
- CU = torch.jit.CompilationUnit(script)
- # to clean up IR
- torch._C._jit_pass_inline(CU.the_method.graph)
- torch._C._jit_pass_constant_propagation(CU.the_method.graph)
- torch._C._jit_check_alias_annotation(CU.the_method.graph, tuple(tensors), aten_name)
- def get_nn_module_name_from_kwargs(**kwargs):
- if 'module_name' in kwargs:
- return kwargs['module_name']
- elif 'fullname' in kwargs:
- return kwargs['fullname']
- elif 'constructor' in kwargs:
- return kwargs['constructor'].__name__
- def get_nn_mod_test_name(**kwargs):
- if 'fullname' in kwargs:
- test_name = kwargs['fullname']
- else:
- test_name = get_nn_module_name_from_kwargs(**kwargs)
- if 'desc' in kwargs:
- test_name = "{}_{}".format(test_name, kwargs['desc'])
- return 'test_nn_{}'.format(test_name)
- def get_nn_module_class_from_kwargs(**kwargs):
- name = get_nn_module_name_from_kwargs(**kwargs)
- index = name.find("_")
- if index == -1:
- return name
- else:
- return name[0:name.find("_")]
- def try_get_nn_module_compiled_mod_and_inputs(*args, **kwargs):
- name = get_nn_module_name_from_kwargs(**kwargs)
- if 'desc' in kwargs and 'eval' in kwargs['desc']:
- # eval() is not supported, so skip these tests
- return
- test_name = name
- if 'desc' in kwargs:
- test_name = "{}_{}".format(test_name, kwargs['desc'])
- test_name = get_nn_mod_test_name(**kwargs)
- if test_name in EXCLUDE_SCRIPT_MODULES:
- return
- if 'constructor' in kwargs:
- nn_module = kwargs['constructor']
- else:
- nn_module = getattr(torch.nn, name)
- if "FunctionalModule" in str(nn_module):
- return
- if 'constructor_args_fn' in kwargs:
- constructor_args = kwargs['constructor_args_fn']()
- else:
- constructor_args = kwargs.get('constructor_args', ())
- # Set up inputs from tuple of sizes or constructor fn
- input_dtype = torch.double
- if 'input_fn' in kwargs:
- input = kwargs['input_fn']()
- if isinstance(input, torch.Tensor):
- input = (input,)
- if all(tensor.is_complex() for tensor in input):
- input_dtype = torch.cdouble
- else:
- input = (kwargs['input_size'],)
- # Extra parameters to forward()
- if 'extra_args' in kwargs:
- input = input + kwargs['extra_args']
- if 'target_size' in kwargs:
- input = input + (kwargs['target_size'],)
- elif 'target_fn' in kwargs:
- if torch.is_tensor(input):
- input = (input,)
- input = input + (kwargs['target_fn'](),)
- args_variable, kwargs_variable = create_input(input, dtype=input_dtype)
- f_args_variable = deepcopy(unpack_variables(args_variable))
- out_var = deepcopy(f_args_variable)
- args, mod = f_args_variable, create_script_module(None, nn_module, constructor_args, *f_args_variable)(*f_args_variable)
- return mod, out_var
- def get_all_nn_module_tests():
- return module_tests + new_module_tests + additional_module_tests
|