1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180 |
- import difflib
- import os
- import io
- import shutil
- import struct
- import sys
- import torch
- import tarfile
- import tempfile
- import warnings
- from contextlib import closing, contextmanager
- from ._utils import _import_dotted_name
- from torch._sources import get_source_lines_and_file
- from torch.types import Storage
- from torch.storage import _get_dtype_from_pickle_storage_type
- from typing import Any, BinaryIO, Callable, cast, Dict, Optional, Type, Tuple, Union, IO
- from typing_extensions import TypeAlias # Python 3.10+
- import copyreg
- import pickle
- import pathlib
- import torch._weights_only_unpickler as _weights_only_unpickler
- DEFAULT_PROTOCOL = 2
- LONG_SIZE = struct.Struct('=l').size
- INT_SIZE = struct.Struct('=i').size
- SHORT_SIZE = struct.Struct('=h').size
- MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
- PROTOCOL_VERSION = 1001
- STORAGE_KEY_SEPARATOR = ','
- FILE_LIKE: TypeAlias = Union[str, os.PathLike, BinaryIO, IO[bytes]]
- MAP_LOCATION: TypeAlias = Optional[Union[Callable[[torch.Tensor, str], torch.Tensor], torch.device, str, Dict[str, str]]]
- __all__ = [
- 'SourceChangeWarning',
- 'mkdtemp',
- 'register_package',
- 'check_module_version_greater_or_equal',
- 'validate_cuda_device',
- 'location_tag',
- 'default_restore_location',
- 'normalize_storage_type',
- 'storage_to_tensor_type',
- 'save',
- 'load',
- 'StorageType',
- ]
- class SourceChangeWarning(Warning):
- pass
- @contextmanager
- def mkdtemp():
- path = tempfile.mkdtemp()
- yield path
- shutil.rmtree(path)
- _package_registry = []
- def _is_zipfile(f) -> bool:
- # This is a stricter implementation than zipfile.is_zipfile().
- # zipfile.is_zipfile() is True if the magic number appears anywhere in the
- # binary. Since we expect the files here to be generated by torch.save or
- # torch.jit.save, it's safe to only check the start bytes and avoid
- # collisions and assume the zip has only 1 file.
- # See bugs.python.org/issue28494.
- # Read the first 4 bytes of the file
- read_bytes = []
- start = f.tell()
- byte = f.read(1)
- while byte != b"":
- read_bytes.append(byte)
- if len(read_bytes) == 4:
- break
- byte = f.read(1)
- f.seek(start)
- local_header_magic_number = [b'P', b'K', b'\x03', b'\x04']
- return read_bytes == local_header_magic_number
- def register_package(priority, tagger, deserializer):
- queue_elem = (priority, tagger, deserializer)
- _package_registry.append(queue_elem)
- _package_registry.sort()
- def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
- '''
- Check if a module's version satisfies requirements
- Usually, a module's version string will be like 'x.y.z', which would be represented
- as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
- string does not match the given tuple's format up to the length of the tuple, then
- error and exit or emit a warning.
- Args:
- module: the module to check the version of
- req_version_tuple: tuple (usually of ints) representing the required version
- error_if_malformed: whether we should exit if module version string is malformed
- Returns:
- requirement_is_met: bool
- '''
- try:
- version_strs = module.__version__.split('.')
- # Cast module version fields to match the types of the required version
- module_version = tuple(
- type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
- )
- requirement_is_met = module_version >= req_version_tuple
- except Exception as e:
- message = (
- "'%s' module version string is malformed '%s' and cannot be compared"
- " with tuple %s"
- ) % (
- module.__name__, module.__version__, str(req_version_tuple)
- )
- if error_if_malformed:
- raise RuntimeError(message) from e
- else:
- warnings.warn(message + ', but continuing assuming that requirement is met')
- requirement_is_met = True
- return requirement_is_met
- def _cpu_tag(obj):
- if obj.device.type == 'cpu':
- return 'cpu'
- def _cuda_tag(obj):
- if obj.device.type == 'cuda':
- return 'cuda:' + str(obj.device.index)
- def _mps_tag(obj):
- if obj.device.type == 'mps':
- return 'mps'
- def _meta_tag(obj):
- if obj.device.type == 'meta':
- return 'meta'
- def _cpu_deserialize(obj, location):
- if location == 'cpu':
- return obj
- def validate_cuda_device(location):
- device = torch.cuda._utils._get_device_index(location, True)
- if not torch.cuda.is_available():
- raise RuntimeError('Attempting to deserialize object on a CUDA '
- 'device but torch.cuda.is_available() is False. '
- 'If you are running on a CPU-only machine, '
- 'please use torch.load with map_location=torch.device(\'cpu\') '
- 'to map your storages to the CPU.')
- device_count = torch.cuda.device_count()
- if device >= device_count:
- raise RuntimeError('Attempting to deserialize object on CUDA device '
- f'{device} but torch.cuda.device_count() is {device_count}. Please use '
- 'torch.load with map_location to map your storages '
- 'to an existing device.')
- return device
- def _cuda_deserialize(obj, location):
- if location.startswith('cuda'):
- device = validate_cuda_device(location)
- if getattr(obj, "_torch_load_uninitialized", False):
- with torch.cuda.device(device):
- return torch.UntypedStorage(obj.nbytes(), device=torch.device(location))
- else:
- return obj.cuda(device)
- def _mps_deserialize(obj, location):
- if location == 'mps':
- return obj.mps()
- def _meta_deserialize(obj, location):
- if location == 'meta':
- return torch.UntypedStorage(obj.nbytes(), device='meta')
- register_package(10, _cpu_tag, _cpu_deserialize)
- register_package(20, _cuda_tag, _cuda_deserialize)
- register_package(21, _mps_tag, _mps_deserialize)
- register_package(22, _meta_tag, _meta_deserialize)
- def location_tag(storage: Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]):
- for _, tagger, _ in _package_registry:
- location = tagger(storage)
- if location:
- return location
- raise RuntimeError("don't know how to determine data location of "
- + torch.typename(storage))
- def default_restore_location(storage, location):
- for _, _, fn in _package_registry:
- result = fn(storage, location)
- if result is not None:
- return result
- raise RuntimeError("don't know how to restore data location of "
- + torch.typename(storage) + " (tagged with "
- + location + ")")
- def normalize_storage_type(storage_type):
- return getattr(torch, storage_type.__name__)
- def storage_to_tensor_type(storage):
- storage_type = type(storage)
- module = _import_dotted_name(storage_type.__module__)
- return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
- def _is_path(name_or_buffer):
- return isinstance(name_or_buffer, (str, pathlib.Path))
- class _opener:
- def __init__(self, file_like):
- self.file_like = file_like
- def __enter__(self):
- return self.file_like
- def __exit__(self, *args):
- pass
- class _open_file(_opener):
- def __init__(self, name, mode):
- super().__init__(open(name, mode))
- def __exit__(self, *args):
- self.file_like.close()
- class _open_buffer_reader(_opener):
- def __init__(self, buffer):
- super().__init__(buffer)
- _check_seekable(buffer)
- class _open_buffer_writer(_opener):
- def __exit__(self, *args):
- self.file_like.flush()
- def _open_file_like(name_or_buffer, mode):
- if _is_path(name_or_buffer):
- return _open_file(name_or_buffer, mode)
- else:
- if 'w' in mode:
- return _open_buffer_writer(name_or_buffer)
- elif 'r' in mode:
- return _open_buffer_reader(name_or_buffer)
- else:
- raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}")
- class _open_zipfile_reader(_opener):
- def __init__(self, name_or_buffer) -> None:
- super().__init__(torch._C.PyTorchFileReader(name_or_buffer))
- class _open_zipfile_writer_file(_opener):
- def __init__(self, name) -> None:
- super().__init__(torch._C.PyTorchFileWriter(str(name)))
- def __exit__(self, *args) -> None:
- self.file_like.write_end_of_file()
- class _open_zipfile_writer_buffer(_opener):
- def __init__(self, buffer) -> None:
- if not callable(getattr(buffer, "write", None)):
- msg = f"Buffer of {str(type(buffer)).strip('<>')} has no callable attribute 'write'"
- if not hasattr(buffer, "write"):
- raise AttributeError(msg)
- raise TypeError(msg)
- self.buffer = buffer
- super().__init__(torch._C.PyTorchFileWriter(buffer))
- def __exit__(self, *args) -> None:
- self.file_like.write_end_of_file()
- self.buffer.flush()
- def _open_zipfile_writer(name_or_buffer):
- container: Type[_opener]
- if _is_path(name_or_buffer):
- container = _open_zipfile_writer_file
- else:
- container = _open_zipfile_writer_buffer
- return container(name_or_buffer)
- def _is_compressed_file(f) -> bool:
- compress_modules = ['gzip']
- try:
- return f.__module__ in compress_modules
- except AttributeError:
- return False
- def _should_read_directly(f):
- """
- Checks if f is a file that should be read directly. It should be read
- directly if it is backed by a real file (has a fileno) and is not a
- a compressed file (e.g. gzip)
- """
- if _is_compressed_file(f):
- return False
- try:
- return f.fileno() >= 0
- except io.UnsupportedOperation:
- return False
- except AttributeError:
- return False
- def _check_seekable(f) -> bool:
- def raise_err_msg(patterns, e):
- for p in patterns:
- if p in str(e):
- msg = (str(e) + ". You can only torch.load from a file that is seekable."
- + " Please pre-load the data into a buffer like io.BytesIO and"
- + " try to load from it instead.")
- raise type(e)(msg)
- raise e
- try:
- f.seek(f.tell())
- return True
- except (io.UnsupportedOperation, AttributeError) as e:
- raise_err_msg(["seek", "tell"], e)
- return False
- def _check_dill_version(pickle_module) -> None:
- '''Checks if using dill as the pickle module, and if so, checks if it is the correct version.
- If dill version is lower than 0.3.1, a ValueError is raised.
- Args:
- pickle_module: module used for pickling metadata and objects
- '''
- if pickle_module is not None and pickle_module.__name__ == 'dill':
- required_dill_version = (0, 3, 1)
- if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
- raise ValueError((
- "'torch' supports dill >= %s, but you have dill %s."
- " Please upgrade dill or switch to 'pickle'"
- ) % (
- '.'.join([str(num) for num in required_dill_version]),
- pickle_module.__version__
- ))
- def _check_save_filelike(f):
- if not isinstance(f, (str, os.PathLike)) and not hasattr(f, 'write'):
- raise AttributeError((
- "expected 'f' to be string, path, or a file-like object with "
- "a 'write' attribute"))
- def save(
- obj: object,
- f: FILE_LIKE,
- pickle_module: Any = pickle,
- pickle_protocol: int = DEFAULT_PROTOCOL,
- _use_new_zipfile_serialization: bool = True
- ) -> None:
- # Reference: https://github.com/pytorch/pytorch/issues/54354
- # The first line of this docstring overrides the one Sphinx generates for the
- # documentation. We need it so that Sphinx doesn't leak `pickle`s path from
- # the build environment (e.g. `<module 'pickle' from '/leaked/path').
- """save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)
- Saves an object to a disk file.
- See also: :ref:`saving-loading-tensors`
- Args:
- obj: saved object
- f: a file-like object (has to implement write and flush) or a string or
- os.PathLike object containing a file name
- pickle_module: module used for pickling metadata and objects
- pickle_protocol: can be specified to override the default protocol
- .. note::
- A common PyTorch convention is to save tensors using .pt file extension.
- .. note::
- PyTorch preserves storage sharing across serialization. See
- :ref:`preserve-storage-sharing` for more details.
- .. note::
- The 1.6 release of PyTorch switched ``torch.save`` to use a new
- zipfile-based file format. ``torch.load`` still retains the ability to
- load files in the old format. If for any reason you want ``torch.save``
- to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.
- Example:
- >>> # xdoctest: +SKIP("makes cwd dirty")
- >>> # Save to file
- >>> x = torch.tensor([0, 1, 2, 3, 4])
- >>> torch.save(x, 'tensor.pt')
- >>> # Save to io.BytesIO buffer
- >>> buffer = io.BytesIO()
- >>> torch.save(x, buffer)
- """
- torch._C._log_api_usage_once("torch.save")
- _check_dill_version(pickle_module)
- _check_save_filelike(f)
- if _use_new_zipfile_serialization:
- with _open_zipfile_writer(f) as opened_zipfile:
- _save(obj, opened_zipfile, pickle_module, pickle_protocol)
- return
- else:
- with _open_file_like(f, 'wb') as opened_file:
- _legacy_save(obj, opened_file, pickle_module, pickle_protocol)
- def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None:
- import torch.nn as nn
- serialized_container_types = {}
- serialized_storages = {}
- # Since loading storages that view the same data with different dtypes is
- # not supported, we need to keep track of the dtype associated with each
- # storage data_ptr and throw an error if the dtype is ever different.
- # TODO: This feature could be added in the future
- storage_dtypes: Dict[int, torch.dtype] = {}
- def persistent_id(obj: Any) -> Optional[Tuple]:
- # FIXME: the docs say that persistent_id should only return a string
- # but torch store returns tuples. This works only in the binary protocol
- # see
- # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
- # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
- if isinstance(obj, type) and issubclass(obj, nn.Module):
- if obj in serialized_container_types:
- return None
- serialized_container_types[obj] = True
- source_file = source = None
- try:
- source_lines, _, source_file = get_source_lines_and_file(obj)
- source = ''.join(source_lines)
- except Exception: # saving the source is optional, so we can ignore any errors
- warnings.warn("Couldn't retrieve source code for container of "
- "type " + obj.__name__ + ". It won't be checked "
- "for correctness upon loading.")
- return ('module', obj, source_file, source)
- if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
- storage: torch.UntypedStorage
- if isinstance(obj, torch.storage.TypedStorage):
- # TODO: Once we decide to break serialization FC, this case
- # can be deleted
- storage = obj._untyped_storage
- storage_dtype = obj.dtype
- storage_type_str = obj._pickle_storage_type()
- storage_type = getattr(torch, storage_type_str)
- dtype = obj.dtype
- storage_numel = obj._size()
- elif isinstance(obj, torch.UntypedStorage):
- storage = obj
- storage_dtype = torch.uint8
- storage_type = normalize_storage_type(type(obj))
- dtype = torch.uint8
- storage_numel = storage.nbytes()
- else:
- raise TypeError(f'type not recognized: {type(obj)}')
- # If storage is allocated, ensure that any other saved storages
- # pointing to the same data all have the same dtype. If storage is
- # not allocated, don't perform this check
- if storage.data_ptr() != 0:
- if storage.data_ptr() in storage_dtypes:
- if storage_dtype != storage_dtypes[storage.data_ptr()]:
- raise RuntimeError(
- 'Cannot save multiple tensors or storages that '
- 'view the same data as different types')
- else:
- storage_dtypes[storage.data_ptr()] = storage_dtype
- view_metadata: Optional[Tuple[str, int, int]]
- # Offset is always 0, but we keep it for backwards compatibility
- # with the old serialization format (which supported storage views)
- offset = 0
- storage_key = str(storage._cdata)
- location = location_tag(storage)
- # TODO: There's an issue here with FC. It might be impossible to
- # solve, but it's worth noting. Imagine we save a list `[storage,
- # tensor]`, where `tensor.storage()` is the same as `storage`, and
- # `tensor.element_size() > 1`. Let's say that `tensor.dtype ==
- # torch.float`. The storage will be serialized with element size
- # of 1, since we're choosing to serialize the first occurance of
- # a duplicate storage. Since this legacy serialization format saves
- # the numel of the storage, rather than nbytes directly, we'll be
- # effectively saving nbytes in this case. We'll be able to load it
- # and the tensor back up with no problems in _this_ and future
- # versions of pytorch, but in older versions, here's the problem:
- # the storage will be loaded up as a UntypedStorage, and then the
- # FloatTensor will loaded and the UntypedStorage will be assigned to
- # it. Since the storage dtype does not match the tensor dtype, this
- # will cause an error. If we reverse the list, like `[tensor,
- # storage]`, then we will save the `tensor.storage()` as a faked
- # `FloatStorage`, and the saved size will be the correct
- # dtype-specific numel count that old versions expect. `tensor`
- # will be able to load up properly in old versions, pointing to
- # a FloatStorage. However, `storage` is still being translated to
- # a UntypedStorage, and it will try to resolve to the same
- # FloatStorage that `tensor` contains. This will also cause an
- # error. It doesn't seem like there's any way around this.
- # Probably, we just cannot maintain FC for the legacy format if the
- # saved list contains both a tensor and a storage that point to the
- # same data. We should still be able to maintain FC for lists of
- # just tensors, as long as all views share the same dtype as the
- # tensor they are viewing.
- if storage_key not in serialized_storages:
- serialized_storages[storage_key] = (storage, dtype)
- is_view = storage._cdata != storage._cdata
- if is_view:
- view_metadata = (str(storage._cdata), offset, storage.nbytes())
- else:
- view_metadata = None
- res = ('storage',
- storage_type,
- storage_key,
- location,
- storage_numel,
- view_metadata)
- return res
- return None
- sys_info = dict(
- protocol_version=PROTOCOL_VERSION,
- little_endian=sys.byteorder == 'little',
- type_sizes=dict(
- short=SHORT_SIZE,
- int=INT_SIZE,
- long=LONG_SIZE,
- ),
- )
- pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
- pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
- pickle_module.dump(sys_info, f, protocol=pickle_protocol)
- pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
- pickler.persistent_id = persistent_id
- pickler.dump(obj)
- serialized_storage_keys = sorted(serialized_storages.keys())
- pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
- f.flush()
- for key in serialized_storage_keys:
- storage, dtype = serialized_storages[key]
- storage._write_file(f, _should_read_directly(f), True, torch._utils._element_size(dtype))
- def _save(obj, zip_file, pickle_module, pickle_protocol):
- serialized_storages = {}
- id_map: Dict[int, str] = {}
- # Since loading storages that view the same data with different dtypes is
- # not supported, we need to keep track of the dtype associated with each
- # storage data_ptr and throw an error if the dtype is ever different.
- # TODO: This feature could be added in the future
- storage_dtypes: Dict[int, torch.dtype] = {}
- def persistent_id(obj):
- # FIXME: the docs say that persistent_id should only return a string
- # but torch store returns tuples. This works only in the binary protocol
- # see
- # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
- # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
- if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
- if isinstance(obj, torch.storage.TypedStorage):
- # TODO: Once we decide to break serialization FC, this case
- # can be deleted
- storage = obj._untyped_storage
- storage_dtype = obj.dtype
- storage_type_str = obj._pickle_storage_type()
- storage_type = getattr(torch, storage_type_str)
- storage_numel = obj._size()
- else:
- storage = obj
- storage_dtype = torch.uint8
- storage_type = normalize_storage_type(type(obj))
- storage_numel = storage.nbytes()
- # If storage is allocated, ensure that any other saved storages
- # pointing to the same data all have the same dtype. If storage is
- # not allocated, don't perform this check
- if storage.data_ptr() != 0:
- if storage.data_ptr() in storage_dtypes:
- if storage_dtype != storage_dtypes[storage.data_ptr()]:
- raise RuntimeError(
- 'Cannot save multiple tensors or storages that '
- 'view the same data as different types')
- else:
- storage_dtypes[storage.data_ptr()] = storage_dtype
- storage_key = id_map.setdefault(storage._cdata, str(len(id_map)))
- location = location_tag(storage)
- serialized_storages[storage_key] = storage
- return ('storage',
- storage_type,
- storage_key,
- location,
- storage_numel)
- return None
- # Write the pickle data for `obj`
- data_buf = io.BytesIO()
- pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
- pickler.persistent_id = persistent_id
- pickler.dump(obj)
- data_value = data_buf.getvalue()
- zip_file.write_record('data.pkl', data_value, len(data_value))
- # Write each tensor to a file named tensor/the_tensor_key in the zip archive
- for key in sorted(serialized_storages.keys()):
- name = f'data/{key}'
- storage = serialized_storages[key]
- # given that we copy things around anyway, we might use storage.cpu()
- # this means to that to get tensors serialized, you need to implement
- # .cpu() on the underlying Storage
- if storage.device.type != 'cpu':
- storage = storage.cpu()
- # Now that it is on the CPU we can directly copy it into the zip file
- num_bytes = storage.nbytes()
- zip_file.write_record(name, storage.data_ptr(), num_bytes)
- def load(
- f: FILE_LIKE,
- map_location: MAP_LOCATION = None,
- pickle_module: Any = None,
- *,
- weights_only: bool = False,
- **pickle_load_args: Any
- ) -> Any:
- # Reference: https://github.com/pytorch/pytorch/issues/54354
- # The first line of this docstring overrides the one Sphinx generates for the
- # documentation. We need it so that Sphinx doesn't leak `pickle`s path from
- # the build environment (e.g. `<module 'pickle' from '/leaked/path').
- """load(f, map_location=None, pickle_module=pickle, *, weights_only=False, **pickle_load_args)
- Loads an object saved with :func:`torch.save` from a file.
- :func:`torch.load` uses Python's unpickling facilities but treats storages,
- which underlie tensors, specially. They are first deserialized on the
- CPU and are then moved to the device they were saved from. If this fails
- (e.g. because the run time system doesn't have certain devices), an exception
- is raised. However, storages can be dynamically remapped to an alternative
- set of devices using the :attr:`map_location` argument.
- If :attr:`map_location` is a callable, it will be called once for each serialized
- storage with two arguments: storage and location. The storage argument
- will be the initial deserialization of the storage, residing on the CPU.
- Each serialized storage has a location tag associated with it which
- identifies the device it was saved from, and this tag is the second
- argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
- for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
- :attr:`map_location` should return either ``None`` or a storage. If
- :attr:`map_location` returns a storage, it will be used as the final deserialized
- object, already moved to the right device. Otherwise, :func:`torch.load` will
- fall back to the default behavior, as if :attr:`map_location` wasn't specified.
- If :attr:`map_location` is a :class:`torch.device` object or a string containing
- a device tag, it indicates the location where all tensors should be loaded.
- Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
- appearing in the file (keys), to ones that specify where to put the
- storages (values).
- User extensions can register their own location tags and tagging and
- deserialization methods using :func:`torch.serialization.register_package`.
- Args:
- f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),
- or a string or os.PathLike object containing a file name
- map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
- locations
- pickle_module: module used for unpickling metadata and objects (has to
- match the :attr:`pickle_module` used to serialize file)
- weights_only: Indicates whether unpickler should be restricted to
- loading only tensors, primitive types and dictionaries
- pickle_load_args: (Python 3 only) optional keyword arguments passed over to
- :func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
- :attr:`errors=...`.
- .. warning::
- :func:`torch.load()` unless `weights_only` parameter is set to `True`,
- uses ``pickle`` module implicitly, which is known to be insecure.
- It is possible to construct malicious pickle data which will execute arbitrary code
- during unpickling. Never load data that could have come from an untrusted
- source in an unsafe mode, or that could have been tampered with. **Only load data you trust**.
- .. note::
- When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
- will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
- and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
- .. note::
- By default, we decode byte strings as ``utf-8``. This is to avoid a common error
- case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
- when loading files saved by Python 2 in Python 3. If this default
- is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
- these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
- to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
- as byte arrays which can be decoded later with ``byte_array.decode(...)``.
- Example:
- >>> # xdoctest: +SKIP("undefined filepaths")
- >>> torch.load('tensors.pt')
- # Load all tensors onto the CPU
- >>> torch.load('tensors.pt', map_location=torch.device('cpu'))
- # Load all tensors onto the CPU, using a function
- >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
- # Load all tensors onto GPU 1
- >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
- # Map tensors from GPU 1 to GPU 0
- >>> torch.load('tensors.pt', map_location={'cuda:1': 'cuda:0'})
- # Load tensor from io.BytesIO object
- >>> with open('tensor.pt', 'rb') as f:
- ... buffer = io.BytesIO(f.read())
- >>> torch.load(buffer)
- # Load a module with 'ascii' encoding for unpickling
- >>> torch.load('module.pt', encoding='ascii')
- """
- torch._C._log_api_usage_once("torch.load")
- UNSAFE_MESSAGE = (
- "Weights only load failed. Re-running `torch.load` with `weights_only` set to `False`"
- " will likely succeed, but it can result in arbitrary code execution."
- "Do it only if you get the file from a trusted source. WeightsUnpickler error: "
- )
- # Add ability to force safe only weight loads via environment variable
- if os.getenv("TORCH_FORCE_WEIGHTS_ONLY_LOAD", "0").lower() in ['1', 'y', 'yes', 'true']:
- weights_only = True
- if weights_only:
- if pickle_module is not None:
- raise RuntimeError("Can not safely load weights when explicit pickle_module is specified")
- else:
- if pickle_module is None:
- pickle_module = pickle
- _check_dill_version(pickle_module)
- if 'encoding' not in pickle_load_args.keys():
- pickle_load_args['encoding'] = 'utf-8'
- with _open_file_like(f, 'rb') as opened_file:
- if _is_zipfile(opened_file):
- # The zipfile reader is going to advance the current file position.
- # If we want to actually tail call to torch.jit.load, we need to
- # reset back to the original position.
- orig_position = opened_file.tell()
- with _open_zipfile_reader(opened_file) as opened_zipfile:
- if _is_torchscript_zip(opened_zipfile):
- warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
- " dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
- " silence this warning)", UserWarning)
- opened_file.seek(orig_position)
- return torch.jit.load(opened_file, map_location=map_location)
- if weights_only:
- try:
- return _load(opened_zipfile, map_location, _weights_only_unpickler, **pickle_load_args)
- except RuntimeError as e:
- raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
- return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
- if weights_only:
- try:
- return _legacy_load(opened_file, map_location, _weights_only_unpickler, **pickle_load_args)
- except RuntimeError as e:
- raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
- return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
- # Register pickling support for layout instances such as
- # torch.sparse_coo, etc
- def _get_layout(name):
- """Get layout extension object from its string representation.
- """
- cache = _get_layout.cache # type: ignore[attr-defined]
- if not cache:
- for v in torch.__dict__.values():
- if isinstance(v, torch.layout):
- cache[str(v)] = v
- return cache[name]
- # There are yet not good way to type annotate function attributes https://github.com/python/mypy/issues/2087
- _get_layout.cache = {} # type: ignore[attr-defined]
- copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
- def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
- deserialized_objects: Dict[int, Any] = {}
- restore_location = _get_restore_location(map_location)
- class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
- def find_class(self, mod_name, name):
- if type(name) is str and 'Storage' in name:
- try:
- return StorageType(name)
- except KeyError:
- pass
- return super().find_class(mod_name, name)
- def _check_container_source(container_type, source_file, original_source):
- try:
- current_source = ''.join(get_source_lines_and_file(container_type)[0])
- except Exception: # saving the source is optional, so we can ignore any errors
- warnings.warn("Couldn't retrieve source code for container of "
- "type " + container_type.__name__ + ". It won't be checked "
- "for correctness upon loading.")
- return
- if original_source != current_source:
- if container_type.dump_patches:
- file_name = container_type.__name__ + '.patch'
- diff = difflib.unified_diff(current_source.split('\n'),
- original_source.split('\n'),
- source_file,
- source_file, lineterm="")
- lines = '\n'.join(diff)
- try:
- with open(file_name, 'a+') as f:
- file_size = f.seek(0, 2)
- f.seek(0)
- if file_size == 0:
- f.write(lines)
- elif file_size != len(lines) or f.read() != lines:
- raise IOError
- msg = ("Saved a reverse patch to " + file_name + ". "
- "Run `patch -p0 < " + file_name + "` to revert your "
- "changes.")
- except IOError:
- msg = ("Tried to save a patch, but couldn't create a "
- "writable file " + file_name + ". Make sure it "
- "doesn't exist and your working directory is "
- "writable.")
- else:
- msg = ("you can retrieve the original source code by "
- "accessing the object's source attribute or set "
- "`torch.nn.Module.dump_patches = True` and use the "
- "patch tool to revert the changes.")
- msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
- warnings.warn(msg, SourceChangeWarning)
- def legacy_load(f):
- deserialized_objects: Dict[int, Any] = {}
- def persistent_load(saved_id):
- if isinstance(saved_id, tuple):
- # Ignore containers that don't have any sources saved
- if all(saved_id[1:]):
- _check_container_source(*saved_id)
- return saved_id[0]
- return deserialized_objects[int(saved_id)]
- with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
- mkdtemp() as tmpdir:
- tar.extract('storages', path=tmpdir)
- with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
- num_storages = pickle_module.load(f, **pickle_load_args)
- for i in range(num_storages):
- args = pickle_module.load(f, **pickle_load_args)
- key, location, storage_type = args
- dtype = storage_type._dtype
- obj = cast(Storage, torch.UntypedStorage)._new_with_file(f, torch._utils._element_size(dtype))
- obj = restore_location(obj, location)
- # TODO: Once we decide to break serialization FC, we can
- # stop wrapping with TypedStorage
- deserialized_objects[key] = torch.storage.TypedStorage(
- wrap_storage=obj,
- dtype=dtype,
- _internal=True)
- storage_views = pickle_module.load(f, **pickle_load_args)
- for target_cdata, root_cdata, offset, numel in storage_views:
- root = deserialized_objects[root_cdata]
- element_size = torch._utils._element_size(root.dtype)
- offset_bytes = offset * element_size
- # TODO: Once we decide to break serialization FC, we can
- # stop wrapping with TypedStorage
- deserialized_objects[target_cdata] = torch.storage.TypedStorage(
- wrap_storage=root._untyped_storage[offset_bytes:offset_bytes + numel * element_size],
- dtype=root.dtype,
- _internal=True)
- tar.extract('tensors', path=tmpdir)
- with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
- num_tensors = pickle_module.load(f, **pickle_load_args)
- for _ in range(num_tensors):
- args = pickle_module.load(f, **pickle_load_args)
- key, storage_id, original_tensor_type = args
- storage = deserialized_objects[storage_id]
- ndim, = struct.unpack('<i', f.read(4))
- # skip next 4 bytes; legacy encoding treated ndim as 8 bytes
- f.read(4)
- numel = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
- stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
- storage_offset, = struct.unpack('<q', f.read(8))
- tensor = torch.tensor([], dtype=storage.dtype).set_(
- storage._untyped_storage, storage_offset, numel, stride)
- deserialized_objects[key] = tensor
- pickle_file = tar.extractfile('pickle')
- unpickler = UnpicklerWrapper(pickle_file, **pickle_load_args)
- unpickler.persistent_load = persistent_load
- result = unpickler.load()
- return result
- deserialized_objects = {}
- def persistent_load(saved_id):
- assert isinstance(saved_id, tuple)
- typename = _maybe_decode_ascii(saved_id[0])
- data = saved_id[1:]
- if typename == 'module':
- # Ignore containers that don't have any sources saved
- if all(data[1:]):
- _check_container_source(*data)
- return data[0]
- elif typename == 'storage':
- storage_type, root_key, location, numel, view_metadata = data
- location = _maybe_decode_ascii(location)
- dtype = storage_type.dtype
- nbytes = numel * torch._utils._element_size(dtype)
- if root_key not in deserialized_objects:
- obj = cast(Storage, torch.UntypedStorage(nbytes))
- obj._torch_load_uninitialized = True
- # TODO: Once we decide to break serialization FC, we can
- # stop wrapping with TypedStorage
- typed_storage = torch.storage.TypedStorage(
- wrap_storage=restore_location(obj, location),
- dtype=dtype,
- _internal=True)
- deserialized_objects[root_key] = typed_storage
- else:
- typed_storage = deserialized_objects[root_key]
- if typed_storage._data_ptr() == 0:
- typed_storage = torch.storage.TypedStorage(
- device=typed_storage._untyped_storage.device,
- dtype=dtype,
- _internal=True)
- if view_metadata is not None:
- view_key, offset, view_size = view_metadata
- offset_bytes = offset * torch._utils._element_size(dtype)
- view_size_bytes = view_size * torch._utils._element_size(dtype)
- if view_key not in deserialized_objects:
- # TODO: Once we decide to break serialization FC, we can
- # stop wrapping with TypedStorage
- deserialized_objects[view_key] = torch.storage.TypedStorage(
- wrap_storage=typed_storage._untyped_storage[offset_bytes:offset_bytes + view_size_bytes],
- dtype=dtype,
- _internal=True)
- res = deserialized_objects[view_key]
- else:
- res = typed_storage
- return res
- else:
- raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
- _check_seekable(f)
- f_should_read_directly = _should_read_directly(f)
- if f_should_read_directly and f.tell() == 0:
- # legacy_load requires that f has fileno()
- # only if offset is zero we can attempt the legacy tar file loader
- try:
- return legacy_load(f)
- except tarfile.TarError:
- if _is_zipfile(f):
- # .zip is used for torch.jit.save and will throw an un-pickling error here
- raise RuntimeError(
- f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)") from None
- # if not a tarfile, reset file offset and proceed
- f.seek(0)
- if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
- raise RuntimeError(
- "torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
- f"Received object of type \"{type(f)}\". Please update to Python 3.8.2 or newer to restore this "
- "functionality.")
- magic_number = pickle_module.load(f, **pickle_load_args)
- if magic_number != MAGIC_NUMBER:
- raise RuntimeError("Invalid magic number; corrupt file?")
- protocol_version = pickle_module.load(f, **pickle_load_args)
- if protocol_version != PROTOCOL_VERSION:
- raise RuntimeError("Invalid protocol version: %s" % protocol_version)
- _sys_info = pickle_module.load(f, **pickle_load_args)
- unpickler = UnpicklerWrapper(f, **pickle_load_args)
- unpickler.persistent_load = persistent_load
- result = unpickler.load()
- deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
- offset = f.tell() if f_should_read_directly else None
- for key in deserialized_storage_keys:
- assert key in deserialized_objects
- typed_storage = deserialized_objects[key]
- typed_storage._untyped_storage._set_from_file(
- f, offset, f_should_read_directly,
- torch._utils._element_size(typed_storage.dtype))
- if offset is not None:
- offset = f.tell()
- torch._utils._validate_loaded_sparse_tensors()
- return result
- def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str:
- # When using encoding='bytes' in Py3, some **internal** keys stored as
- # strings in Py2 are loaded as bytes. This function decodes them with
- # ascii encoding, one that Py3 uses by default.
- #
- # NOTE: This should only be used on internal keys (e.g., `typename` and
- # `location` in `persistent_load` below!
- if isinstance(bytes_str, bytes):
- return bytes_str.decode('ascii')
- return bytes_str
- def _get_restore_location(map_location):
- if map_location is None:
- restore_location = default_restore_location
- elif isinstance(map_location, dict):
- def restore_location(storage, location):
- location = map_location.get(location, location)
- return default_restore_location(storage, location)
- elif isinstance(map_location, str):
- def restore_location(storage, location):
- return default_restore_location(storage, map_location)
- elif isinstance(map_location, torch.device):
- def restore_location(storage, location):
- return default_restore_location(storage, str(map_location))
- else:
- def restore_location(storage, location):
- result = map_location(storage, location)
- if result is None:
- result = default_restore_location(storage, location)
- return result
- return restore_location
- class StorageType():
- def __init__(self, name):
- self.dtype = _get_dtype_from_pickle_storage_type(name)
- def __str__(self):
- return f'StorageType(dtype={self.dtype})'
- def _load(zip_file, map_location, pickle_module, pickle_file='data.pkl', **pickle_load_args):
- restore_location = _get_restore_location(map_location)
- loaded_storages = {}
- def load_tensor(dtype, numel, key, location):
- name = f'data/{key}'
- storage = zip_file.get_storage_from_record(name, numel, torch.UntypedStorage)._typed_storage()._untyped_storage
- # TODO: Once we decide to break serialization FC, we can
- # stop wrapping with TypedStorage
- typed_storage = torch.storage.TypedStorage(
- wrap_storage=restore_location(storage, location),
- dtype=dtype,
- _internal=True)
- if typed_storage._data_ptr() != 0:
- loaded_storages[key] = typed_storage
- return typed_storage
- def persistent_load(saved_id):
- assert isinstance(saved_id, tuple)
- typename = _maybe_decode_ascii(saved_id[0])
- data = saved_id[1:]
- assert typename == 'storage', \
- f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
- storage_type, key, location, numel = data
- if storage_type is torch.UntypedStorage:
- dtype = torch.uint8
- else:
- dtype = storage_type.dtype
- if key in loaded_storages:
- typed_storage = loaded_storages[key]
- else:
- nbytes = numel * torch._utils._element_size(dtype)
- typed_storage = load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location))
- return typed_storage
- load_module_mapping: Dict[str, str] = {
- # See https://github.com/pytorch/pytorch/pull/51633
- 'torch.tensor': 'torch._tensor'
- }
- # Need to subclass Unpickler instead of directly monkey-patching the find_class method
- # because it's marked readonly in pickle.
- # The type: ignore is because mypy can't statically determine the type of this class.
- class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
- # from https://stackoverflow.com/questions/13398462/unpickling-python-objects-with-a-changed-module-path/13405732
- # Lets us override the imports that pickle uses when unpickling an object.
- # This is useful for maintaining BC if we change a module path that tensor instantiation relies on.
- def find_class(self, mod_name, name):
- if type(name) is str and 'Storage' in name:
- try:
- return StorageType(name)
- except KeyError:
- pass
- mod_name = load_module_mapping.get(mod_name, mod_name)
- return super().find_class(mod_name, name)
- # Load the data (which may in turn use `persistent_load` to load tensors)
- data_file = io.BytesIO(zip_file.get_record(pickle_file))
- unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
- unpickler.persistent_load = persistent_load
- result = unpickler.load()
- torch._utils._validate_loaded_sparse_tensors()
- return result
- def _is_torchscript_zip(zip_file):
- return 'constants.pkl' in zip_file.get_all_records()
|