123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- from collections import deque
- from dataclasses import dataclass
- import functools
- import re
- from typing import Dict, List
- from torch.profiler import DeviceType
- from torch.autograd.profiler import profile
- from torch.autograd import _KinetoEvent
- def _traverse(tree, next_fn, children_fn=lambda x: x.children, reverse: bool = False):
- order = reversed if reverse else lambda x: x
- remaining = deque(order(tree))
- while remaining:
- curr_event = next_fn(remaining)
- yield curr_event
- for child_event in order(children_fn(curr_event)):
- remaining.append(child_event)
- traverse_dfs = functools.partial(_traverse, next_fn=lambda x: x.pop(), reverse=True)
- traverse_bfs = functools.partial(_traverse, next_fn=lambda x: x.popleft(), reverse=False)
- @dataclass
- class EventMetrics:
- duration_time_ns: int = 0
- self_time_ns: int = 0
- idle_time_ns: int = 0
- queue_depth: int = 0
- @property
- def fraction_idle_time(self):
- if self.duration_time_ns == 0:
- return 0.0
- return self.idle_time_ns / self.duration_time_ns
- @dataclass
- class Interval:
- start: int
- end: int
- queue_depth: int = 0
- class EventKey:
- def __init__(self, event):
- self.event = event
- def __hash__(self):
- return hash(self.event.id)
- def __eq__(self, other):
- return self.event.id == other.event.id
- def __repr__(self):
- return f"{self.event.name}"
- def intervals_overlap(self, intervals: List[Interval]):
- overlap_time = 0
- intervals = sorted(intervals, key=lambda x: x.start)
- if intervals:
- overlap_start = max(self.event.start_time_ns, intervals[0].start)
- overlap_end = min(self.event.end_time_ns, intervals[0].end)
- if overlap_start < overlap_end:
- overlap_time += overlap_end - overlap_start
- i, j = 0, 1
- while (j < len(intervals)):
- prev_interval = intervals[i]
- curr_interval = intervals[j]
- j += 1
- if prev_interval.end > curr_interval.start:
- # Completely subsumed by previous interval
- if prev_interval.end > curr_interval.end:
- j += 1
- continue
- else:
- curr_interval.start = prev_interval.end
- i = j
- overlap_start = max(self.event.start_time_ns, curr_interval.start)
- overlap_end = min(self.event.end_time_ns, curr_interval.end)
- if overlap_start < overlap_end:
- overlap_time += overlap_end - overlap_start
- return overlap_time
- class BasicEvaluation:
- def __init__(self, prof: profile):
- self.profile = prof
- self.metrics: Dict[EventKey, EventMetrics] = {}
- self.compute_self_time()
- self.event_keys = sorted((e for e in self.metrics.keys()),
- key=lambda x: x.event.start_time_ns)
- self.events = [e.event for e in self.event_keys]
- self.cuda_events: List[_KinetoEvent] = []
- self.queue_depth_list = self.compute_queue_depth()
- self.compute_idle_time()
- def compute_self_time(self):
- '''
- Computes event's self time(total time - time in child ops).
- '''
- assert (self.profile.kineto_results is not None)
- stack = deque(self.profile.kineto_results.experimental_event_tree())
- # standard iterating dfs
- while stack:
- curr_event = stack.pop()
- self_time = curr_event.duration_time_ns
- for child_event in curr_event.children:
- self_time -= child_event.duration_time_ns
- stack.append(child_event)
- assert EventKey(
- curr_event
- ) not in self.metrics, f"Duplicate id: {curr_event.id}, {curr_event.name}"
- self.metrics[EventKey(curr_event)] = EventMetrics(
- self_time_ns=self_time)
- self.metrics[EventKey(
- curr_event)].duration_time_ns = curr_event.duration_time_ns
- def compute_queue_depth(self):
- '''
- Computes queue_depth at each event. This will calculate the queue depth data for
- All the events in the tree.
- This will return a list of Interval of queue depth data of cuda launch and kernels.
- '''
- assert (self.profile.kineto_results is not None)
- cuda_event_list = self.profile.kineto_results.events()
- def is_cuda_launch_kernel(e):
- # TODO: find a better way to identify cudaLaunchKernel
- return e.name == "cudaLaunchKernel"
- def is_cuda_kernel(e):
- # TODO: find a better way to identify CUDA Kernel
- return e.device_type() == DeviceType.CUDA and "mem" not in e.name.lower()
- cuda_launch_events = sorted(
- (e for e in cuda_event_list if is_cuda_launch_kernel(e)),
- key=lambda x: x.start_us())
- cuda_kernel_events = sorted(
- (e for e in cuda_event_list if is_cuda_kernel(e)),
- key=lambda x: x.start_us())
- self.cuda_events = sorted(cuda_launch_events + cuda_kernel_events,
- key=lambda x: x.start_us())
- kernel_mapping: Dict[_KinetoEvent, int] = {}
- last_mapped_kernel = 0
- for cuda_launch_event in cuda_launch_events:
- index = index_of_first_match(
- cuda_kernel_events,
- lambda x: x.linked_correlation_id(
- ) == cuda_launch_event.linked_correlation_id(),
- start=last_mapped_kernel)
- kernel_mapping[cuda_launch_event] = index
- last_mapped_kernel = index if index is not None else last_mapped_kernel
- current_kernel_index = 0
- spawned_kernel_index = -1
- all_events = cuda_launch_events + cuda_kernel_events + self.events
- def new_old_event_comparator(event):
- if hasattr(event, "start_us"):
- return event.start_us() * 1000
- if hasattr(event, "start_time_ns"):
- return event.start_time_ns
- raise Exception("Unknown Event Type")
- queue_depth_list: List[Interval] = []
- all_events.sort(key=new_old_event_comparator)
- for event in all_events:
- # Find latest cuda kernel event
- if hasattr(event, "start_us"):
- start_time = event.start_us() * 1000
- end_time = (event.start_us() + event.duration_us()) * 1000
- # Find current spawned cuda kernel event
- if event in kernel_mapping and kernel_mapping[
- event] is not None:
- spawned_kernel_index = kernel_mapping[event]
- elif hasattr(event, "start_time_ns"):
- start_time = event.start_time_ns # type: ignore[attr-defined]
- end_time = event.end_time_ns # type: ignore[attr-defined]
- while (current_kernel_index < len(cuda_kernel_events) and
- (cuda_kernel_events[current_kernel_index].start_us()) * 1000
- <= start_time):
- current_kernel_index += 1
- current_queue_depth = spawned_kernel_index - current_kernel_index + 1
- current_queue_depth = max(current_queue_depth, 0)
- if hasattr(event, "start_us"):
- queue_depth_list.append(
- Interval(start_time, end_time, current_queue_depth))
- elif hasattr(event, "start_time_ns"):
- self.metrics[EventKey(event)].queue_depth = current_queue_depth
- return queue_depth_list
- def compute_idle_time(self):
- '''
- Computes idle time of the profile.
- '''
- # Based on queue_depth_list, we can calculate idle time for all the events
- idle = False
- idle_start = 0
- idle_intervals: List[Interval] = []
- if self.queue_depth_list and self.events:
- idle_intervals += [
- Interval(self.events[0].start_time_ns,
- self.queue_depth_list[0].start),
- Interval(self.queue_depth_list[-1].end,
- self.events[-1].end_time_ns)
- ]
- for data_point in self.queue_depth_list:
- if data_point.queue_depth == 0 and not idle:
- idle_start = data_point.end
- idle = True
- if data_point.queue_depth > 0 and idle:
- idle_intervals.append(Interval(idle_start, data_point.start))
- idle = False
- event_list = [e.event for e in self.metrics.keys()]
- for event in event_list:
- self.metrics[EventKey(event)].idle_time_ns = EventKey(
- event).intervals_overlap(idle_intervals)
- def rank_events(self, length):
- '''
- Filter and Rank the events based on some heuristics:
- 1) Events that are in the falling phase of the queue depth.
- 2) Events that have a high idle_time, self_time difference.
- Parameters:
- length: The number of events to return.
- '''
- # Find the interval when qd is falling to 0
- import torch
- queue_depth_list = list(reversed(self.queue_depth_list))
- qd_values = [e.queue_depth for e in queue_depth_list]
- bottom_threashold = 0
- top_threashold = 4
- decrease_interval = []
- i = 0
- while (i < len(qd_values)):
- if qd_values[i] > bottom_threashold:
- i += 1
- continue
- for j in range(i + 1, len(qd_values)):
- # Find next zero and if the max value between them exceeds
- # the threshold, then we have a falling interval
- next_minimum_idx = index_of_first_match(
- qd_values, lambda x: x <= bottom_threashold, start=j)
- peak_idx = argmax(qd_values, start=j, end=next_minimum_idx)
- # if is a valid peak, we add to list and continue
- if peak_idx is not None and qd_values[
- peak_idx] >= top_threashold:
- decrease_interval.append(
- Interval(queue_depth_list[peak_idx].start,
- queue_depth_list[i].start))
- i = next_minimum_idx if next_minimum_idx is not None else i
- break
- i += 1
- # Filter out events that are not in the decrease interval
- event_list = [
- event for event in self.metrics.keys()
- if event.intervals_overlap(decrease_interval)
- ]
- if event_list:
- self_time = torch.tensor(
- [self.metrics[event].self_time_ns for event in event_list],
- dtype=torch.float32)
- idle_time = torch.tensor([
- self.metrics[event].fraction_idle_time for event in event_list
- ], dtype=torch.float32)
- normalized_gain = (idle_time -
- torch.mean(idle_time)) / torch.std(idle_time)
- normalized_self = (self_time -
- torch.mean(self_time)) / torch.std(self_time)
- heuristic_score_list = normalized_gain + 0.6 * normalized_self
- # Sort events by heuristic
- event_list = [
- event
- for _, event in sorted(zip(heuristic_score_list, event_list),
- key=lambda x: x[0],
- reverse=True)
- ]
- event_list = event_list[:length]
- return event_list
- def get_optimizable_events(self,
- length: int = 1,
- print_enable: bool = True):
- event_list = self.rank_events(length)
- if not print_enable:
- return event_list
- output = "Optimizable events:\n" if event_list else "No events to optimize\n"
- output += "\n".join([
- f"""{'-'*80}
- Event: {event}
- Source code location: {source_code_location(event.event)}
- Percentage idle time: {self.metrics[event].fraction_idle_time * 100:.2f}%
- {'-'*80}""" for event in event_list
- ])
- if print_enable:
- print(output)
- return event_list
- def index_of_first_match(seq, predicate, start=0, end=None):
- if end is None or end >= len(seq):
- end = len(seq)
- for i in range(start, end):
- if predicate(seq[i]):
- return i
- return None
- def argmax(seq, key=lambda x: x, start=0, end=None):
- seq = seq[start:end]
- if len(seq) == 0:
- return None
- return seq.index(max(seq, key=key)) + start
- def source_code_location(event):
- while (event is not None):
- match = re.search(r"\.py\(.*\)", event.name)
- if (match is None):
- event = event.parent
- continue
- return event.name
- return "No source code location found"
|