rmsprop.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. import torch
  2. from torch import Tensor
  3. from .optimizer import (Optimizer, _default_to_fused_or_foreach, _use_grad_for_differentiable,
  4. _differentiable_doc, _foreach_doc, _maximize_doc)
  5. from typing import List, Optional
  6. from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
  7. __all__ = ["RMSprop", "rmsprop"]
  8. class RMSprop(Optimizer):
  9. def __init__(
  10. self,
  11. params,
  12. lr=1e-2,
  13. alpha=0.99,
  14. eps=1e-8,
  15. weight_decay=0,
  16. momentum=0,
  17. centered=False,
  18. foreach: Optional[bool] = None,
  19. maximize: bool = False,
  20. differentiable: bool = False,
  21. ):
  22. if not 0.0 <= lr:
  23. raise ValueError("Invalid learning rate: {}".format(lr))
  24. if not 0.0 <= eps:
  25. raise ValueError("Invalid epsilon value: {}".format(eps))
  26. if not 0.0 <= momentum:
  27. raise ValueError("Invalid momentum value: {}".format(momentum))
  28. if not 0.0 <= weight_decay:
  29. raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
  30. if not 0.0 <= alpha:
  31. raise ValueError("Invalid alpha value: {}".format(alpha))
  32. defaults = dict(
  33. lr=lr,
  34. momentum=momentum,
  35. alpha=alpha,
  36. eps=eps,
  37. centered=centered,
  38. weight_decay=weight_decay,
  39. foreach=foreach,
  40. maximize=maximize,
  41. differentiable=differentiable,
  42. )
  43. super().__init__(params, defaults)
  44. def __setstate__(self, state):
  45. super().__setstate__(state)
  46. for group in self.param_groups:
  47. group.setdefault("momentum", 0)
  48. group.setdefault("centered", False)
  49. group.setdefault("foreach", None)
  50. group.setdefault("maximize", False)
  51. group.setdefault("differentiable", False)
  52. def _init_group(self, group, params_with_grad, grads, square_avgs, momentum_buffer_list, grad_avgs):
  53. for p in group["params"]:
  54. if p.grad is None:
  55. continue
  56. params_with_grad.append(p)
  57. if p.grad.is_sparse:
  58. raise RuntimeError("RMSprop does not support sparse gradients")
  59. grads.append(p.grad)
  60. state = self.state[p]
  61. # State initialization
  62. if len(state) == 0:
  63. state["step"] = 0
  64. state["square_avg"] = torch.zeros_like(
  65. p, memory_format=torch.preserve_format
  66. )
  67. if group["momentum"] > 0:
  68. state["momentum_buffer"] = torch.zeros_like(
  69. p, memory_format=torch.preserve_format
  70. )
  71. if group["centered"]:
  72. state["grad_avg"] = torch.zeros_like(
  73. p, memory_format=torch.preserve_format
  74. )
  75. square_avgs.append(state["square_avg"])
  76. if group["momentum"] > 0:
  77. momentum_buffer_list.append(state["momentum_buffer"])
  78. if group["centered"]:
  79. grad_avgs.append(state["grad_avg"])
  80. if group["differentiable"] and isinstance(state["step"], Tensor):
  81. raise RuntimeError("`step` can't be a tensor")
  82. state["step"] += 1
  83. @_use_grad_for_differentiable
  84. def step(self, closure=None):
  85. """Performs a single optimization step.
  86. Args:
  87. closure (Callable, optional): A closure that reevaluates the model
  88. and returns the loss.
  89. """
  90. loss = None
  91. if closure is not None:
  92. with torch.enable_grad():
  93. loss = closure()
  94. for group in self.param_groups:
  95. params_with_grad = []
  96. grads = []
  97. square_avgs = []
  98. grad_avgs = []
  99. momentum_buffer_list = []
  100. self._init_group(group, params_with_grad, grads, square_avgs, momentum_buffer_list, grad_avgs)
  101. rmsprop(
  102. params_with_grad,
  103. grads,
  104. square_avgs,
  105. grad_avgs,
  106. momentum_buffer_list,
  107. lr=group["lr"],
  108. alpha=group["alpha"],
  109. eps=group["eps"],
  110. weight_decay=group["weight_decay"],
  111. momentum=group["momentum"],
  112. centered=group["centered"],
  113. foreach=group["foreach"],
  114. maximize=group["maximize"],
  115. differentiable=group["differentiable"],
  116. )
  117. return loss
  118. RMSprop.__doc__ = r"""Implements RMSprop algorithm.
  119. .. math::
  120. \begin{aligned}
  121. &\rule{110mm}{0.4pt} \\
  122. &\textbf{input} : \alpha \text{ (alpha)},\: \gamma \text{ (lr)},
  123. \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\
  124. &\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},\: centered\\
  125. &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \:
  126. \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex]
  127. &\rule{110mm}{0.4pt} \\
  128. &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
  129. &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
  130. &\hspace{5mm}if \: \lambda \neq 0 \\
  131. &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
  132. &\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t
  133. \hspace{8mm} \\
  134. &\hspace{5mm} \tilde{v_t} \leftarrow v_t \\
  135. &\hspace{5mm}if \: centered \\
  136. &\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t \\
  137. &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}_{t} \big)^2 \\
  138. &\hspace{5mm}if \: \mu > 0 \\
  139. &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} +
  140. g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \\
  141. &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t \\
  142. &\hspace{5mm} else \\
  143. &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} -
  144. \gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \hspace{3mm} \\
  145. &\rule{110mm}{0.4pt} \\[-1.ex]
  146. &\bf{return} \: \theta_t \\[-1.ex]
  147. &\rule{110mm}{0.4pt} \\[-1.ex]
  148. \end{aligned}
  149. For further details regarding the algorithm we refer to
  150. `lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton.
  151. and centered version `Generating Sequences
  152. With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
  153. The implementation here takes the square root of the gradient average before
  154. adding epsilon (note that TensorFlow interchanges these two operations). The effective
  155. learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma`
  156. is the scheduled learning rate and :math:`v` is the weighted moving average
  157. of the squared gradient.
  158. """ + r"""
  159. Args:
  160. params (iterable): iterable of parameters to optimize or dicts defining
  161. parameter groups
  162. lr (float, optional): learning rate (default: 1e-2)
  163. momentum (float, optional): momentum factor (default: 0)
  164. alpha (float, optional): smoothing constant (default: 0.99)
  165. eps (float, optional): term added to the denominator to improve
  166. numerical stability (default: 1e-8)
  167. centered (bool, optional) : if ``True``, compute the centered RMSProp,
  168. the gradient is normalized by an estimation of its variance
  169. weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
  170. {foreach}
  171. {maximize}
  172. {differentiable}
  173. """.format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc)
  174. def rmsprop(
  175. params: List[Tensor],
  176. grads: List[Tensor],
  177. square_avgs: List[Tensor],
  178. grad_avgs: List[Tensor],
  179. momentum_buffer_list: List[Tensor],
  180. # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
  181. # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
  182. foreach: Optional[bool] = None,
  183. maximize: bool = False,
  184. differentiable: bool = False,
  185. *,
  186. lr: float,
  187. alpha: float,
  188. eps: float,
  189. weight_decay: float,
  190. momentum: float,
  191. centered: bool,
  192. ):
  193. r"""Functional API that performs rmsprop algorithm computation.
  194. See :class:`~torch.optim.RMSProp` for details.
  195. """
  196. if foreach is None:
  197. _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
  198. if foreach and torch.jit.is_scripting():
  199. raise RuntimeError("torch.jit.script not supported with foreach optimizers")
  200. if foreach and not torch.jit.is_scripting():
  201. func = _multi_tensor_rmsprop
  202. else:
  203. func = _single_tensor_rmsprop
  204. func(
  205. params,
  206. grads,
  207. square_avgs,
  208. grad_avgs,
  209. momentum_buffer_list,
  210. lr=lr,
  211. alpha=alpha,
  212. eps=eps,
  213. weight_decay=weight_decay,
  214. momentum=momentum,
  215. centered=centered,
  216. maximize=maximize,
  217. differentiable=differentiable,
  218. )
  219. def _single_tensor_rmsprop(
  220. params: List[Tensor],
  221. grads: List[Tensor],
  222. square_avgs: List[Tensor],
  223. grad_avgs: List[Tensor],
  224. momentum_buffer_list: List[Tensor],
  225. *,
  226. lr: float,
  227. alpha: float,
  228. eps: float,
  229. weight_decay: float,
  230. momentum: float,
  231. centered: bool,
  232. maximize: bool,
  233. differentiable: bool,
  234. ):
  235. for i, param in enumerate(params):
  236. grad = grads[i]
  237. grad = grad if not maximize else -grad
  238. square_avg = square_avgs[i]
  239. if weight_decay != 0:
  240. grad = grad.add(param, alpha=weight_decay)
  241. is_complex_param = torch.is_complex(param)
  242. if is_complex_param:
  243. param = torch.view_as_real(param)
  244. grad = torch.view_as_real(grad)
  245. square_avg = torch.view_as_real(square_avg)
  246. square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha)
  247. if centered:
  248. grad_avg = grad_avgs[i]
  249. if is_complex_param:
  250. grad_avg = torch.view_as_real(grad_avg)
  251. grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha)
  252. avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_()
  253. else:
  254. avg = square_avg.sqrt()
  255. if differentiable:
  256. avg = avg.add(eps)
  257. else:
  258. avg = avg.add_(eps)
  259. if momentum > 0:
  260. buf = momentum_buffer_list[i]
  261. if is_complex_param:
  262. buf = torch.view_as_real(buf)
  263. buf.mul_(momentum).addcdiv_(grad, avg)
  264. param.add_(buf, alpha=-lr)
  265. else:
  266. param.addcdiv_(grad, avg, value=-lr)
  267. def _multi_tensor_rmsprop(
  268. params: List[Tensor],
  269. grads: List[Tensor],
  270. square_avgs: List[Tensor],
  271. grad_avgs: List[Tensor],
  272. momentum_buffer_list: List[Tensor],
  273. *,
  274. lr: float,
  275. alpha: float,
  276. eps: float,
  277. weight_decay: float,
  278. momentum: float,
  279. centered: bool,
  280. maximize: bool,
  281. differentiable: bool,
  282. ):
  283. if len(params) == 0:
  284. return
  285. assert not differentiable, "_foreach ops don't support autograd"
  286. grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, square_avgs, grad_avgs, momentum_buffer_list])
  287. for (grouped_params, grouped_grads, grouped_square_avgs, grouped_grad_avgs,
  288. grouped_momentum_buffer_list) in grouped_tensors.values():
  289. if maximize:
  290. grouped_grads = torch._foreach_neg(grouped_grads)
  291. if weight_decay != 0:
  292. grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
  293. def _view_complex_as_real(tensor_list):
  294. return [
  295. torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list
  296. ]
  297. grouped_grads = _view_complex_as_real(grouped_grads)
  298. grouped_params = _view_complex_as_real(grouped_params)
  299. grouped_square_avgs = _view_complex_as_real(grouped_square_avgs)
  300. torch._foreach_mul_(grouped_square_avgs, alpha)
  301. torch._foreach_addcmul_(grouped_square_avgs, grouped_grads, grouped_grads, value=1 - alpha)
  302. if centered:
  303. grouped_grad_avgs = _view_complex_as_real(grouped_grad_avgs)
  304. torch._foreach_mul_(grouped_grad_avgs, alpha)
  305. torch._foreach_add_(grouped_grad_avgs, grouped_grads, alpha=1 - alpha)
  306. avg = torch._foreach_addcmul(grouped_square_avgs, grouped_grad_avgs, grouped_grad_avgs, value=-1)
  307. torch._foreach_sqrt_(avg)
  308. torch._foreach_add_(avg, eps)
  309. else:
  310. avg = torch._foreach_sqrt(grouped_square_avgs)
  311. torch._foreach_add_(avg, eps)
  312. if momentum > 0:
  313. grouped_momentum_buffer_list = _view_complex_as_real(grouped_momentum_buffer_list)
  314. torch._foreach_mul_(grouped_momentum_buffer_list, momentum)
  315. torch._foreach_addcdiv_(grouped_momentum_buffer_list, grouped_grads, avg)
  316. torch._foreach_add_(grouped_params, grouped_momentum_buffer_list, alpha=-lr)
  317. else:
  318. torch._foreach_addcdiv_(grouped_params, grouped_grads, avg, value=-lr)