123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- import torch
- from torch import Tensor
- from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt, _stack_if_compiling,
- _differentiable_doc, _foreach_doc, _default_to_fused_or_foreach)
- from typing import List, Optional
- from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
- __all__ = ['NAdam', 'nadam']
- class NAdam(Optimizer):
- def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
- weight_decay=0, momentum_decay=4e-3, *, foreach: Optional[bool] = None,
- differentiable: bool = False):
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
- if not 0.0 <= weight_decay:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- if not 0.0 <= momentum_decay:
- raise ValueError("Invalid momentum_decay value: {}".format(momentum_decay))
- defaults = dict(lr=lr, betas=betas, eps=eps,
- weight_decay=weight_decay, momentum_decay=momentum_decay,
- foreach=foreach, differentiable=differentiable)
- super().__init__(params, defaults)
- def __setstate__(self, state):
- super().__setstate__(state)
- for group in self.param_groups:
- group.setdefault('foreach', None)
- group.setdefault('differentiable', False)
- state_values = list(self.state.values())
- step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
- if not step_is_tensor:
- for s in state_values:
- s['step'] = torch.tensor(float(s['step']))
- mu_product_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu_product'])
- if not mu_product_is_tensor:
- for s in state_values:
- s['mu_product'] = torch.tensor(s['mu_product'])
- def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps):
- for p in group['params']:
- if p.grad is not None:
- params_with_grad.append(p)
- if p.grad.is_sparse:
- raise RuntimeError('NAdam does not support sparse gradients')
- grads.append(p.grad)
- state = self.state[p]
- # Lazy state initialization
- if len(state) == 0:
- state['step'] = torch.tensor(0.)
- state['mu_product'] = torch.tensor(1.)
- # Exponential moving average of gradient values
- state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
- # Exponential moving average of squared gradient values
- state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
- exp_avgs.append(state['exp_avg'])
- exp_avg_sqs.append(state['exp_avg_sq'])
- mu_products.append(state['mu_product'])
- state_steps.append(state['step'])
- @_use_grad_for_differentiable
- def step(self, closure=None):
- """Performs a single optimization step.
- Args:
- closure (Callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- with torch.enable_grad():
- loss = closure()
- for group in self.param_groups:
- params_with_grad = []
- grads = []
- exp_avgs = []
- exp_avg_sqs = []
- mu_products = []
- state_steps = []
- beta1, beta2 = group['betas']
- self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps)
- nadam(params_with_grad,
- grads,
- exp_avgs,
- exp_avg_sqs,
- mu_products,
- state_steps,
- beta1=beta1,
- beta2=beta2,
- lr=group['lr'],
- weight_decay=group['weight_decay'],
- momentum_decay=group['momentum_decay'],
- eps=group['eps'],
- foreach=group['foreach'],
- differentiable=group['differentiable'])
- return loss
- NAdam.__doc__ = r"""Implements NAdam algorithm.
- .. math::
- \begin{aligned}
- &\rule{110mm}{0.4pt} \\
- &\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},
- \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\
- &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\
- &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
- v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex]
- &\rule{110mm}{0.4pt} \\
- &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
- &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
- &\hspace{5mm}if \: \lambda \neq 0 \\
- &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
- &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\
- &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\
- &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
- &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
- &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]
- & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\
- &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
- &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
- \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
- &\rule{110mm}{0.4pt} \\[-1.ex]
- &\bf{return} \: \theta_t \\[-1.ex]
- &\rule{110mm}{0.4pt} \\[-1.ex]
- \end{aligned}
- For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.
- """ + r"""
- Args:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 2e-3)
- betas (Tuple[float, float], optional): coefficients used for computing
- running averages of gradient and its square (default: (0.9, 0.999))
- eps (float, optional): term added to the denominator to improve
- numerical stability (default: 1e-8)
- weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
- momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)
- {foreach}
- {differentiable}
- .. _Incorporating Nesterov Momentum into Adam:
- https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
- """.format(foreach=_foreach_doc, differentiable=_differentiable_doc)
- def nadam(params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_avg_sqs: List[Tensor],
- mu_products: List[Tensor],
- state_steps: List[Tensor],
- # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
- # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
- foreach: Optional[bool] = None,
- differentiable: bool = False,
- *,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- momentum_decay: float,
- eps: float):
- r"""Functional API that performs NAdam algorithm computation.
- See :class:`~torch.optim.NAdam` for details.
- """
- if not all(isinstance(t, torch.Tensor) for t in state_steps):
- raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
- if not all(isinstance(t, torch.Tensor) for t in mu_products):
- raise RuntimeError("API has changed, `mu_products` argument must contain a list of singleton tensors")
- if foreach is None:
- _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
- if foreach and torch.jit.is_scripting():
- raise RuntimeError('torch.jit.script not supported with foreach optimizers')
- if foreach and not torch.jit.is_scripting():
- func = _multi_tensor_nadam
- else:
- func = _single_tensor_nadam
- func(params,
- grads,
- exp_avgs,
- exp_avg_sqs,
- mu_products,
- state_steps,
- beta1=beta1,
- beta2=beta2,
- lr=lr,
- weight_decay=weight_decay,
- momentum_decay=momentum_decay,
- eps=eps,
- differentiable=differentiable)
- def _single_tensor_nadam(params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_avg_sqs: List[Tensor],
- mu_products: List[Tensor],
- state_steps: List[Tensor],
- *,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- momentum_decay: float,
- eps: float,
- differentiable: bool):
- for i, param in enumerate(params):
- grad = grads[i]
- exp_avg = exp_avgs[i]
- exp_avg_sq = exp_avg_sqs[i]
- mu_product = mu_products[i]
- step_t = state_steps[i]
- # update step
- step_t += 1
- step = _get_value(step_t)
- bias_correction2 = 1 - beta2 ** step
- if weight_decay != 0:
- grad = grad.add(param, alpha=weight_decay)
- # calculate the momentum cache \mu^{t} and \mu^{t+1}
- mu = beta1 * (1. - 0.5 * (0.96 ** (step * momentum_decay)))
- mu_next = beta1 * (1. - 0.5 * (0.96 ** ((step + 1) * momentum_decay)))
- # update mu_product
- mu_product *= mu
- # decay the first and second moment running average coefficient
- exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
- exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
- denom = exp_avg_sq.div(bias_correction2).sqrt()
- if differentiable:
- denom = denom.add(eps)
- # Make autograd track the operations
- # by updating the grad and exp_avg directly and not using the
- # scalar "value" argument of addcdiv.
- mu_product_next = mu_product * mu_next
- grad = grad * (-lr * (1. - mu) / (1. - mu_product))
- exp_avg = grad * (-lr * (1. - mu_next) / (1. - mu_product_next))
- param.addcdiv_(grad, denom)
- param.addcdiv_(exp_avg, denom)
- else:
- mu_product_next = _get_value(mu_product) * mu_next
- denom.add_(eps)
- param.addcdiv_(grad, denom, value=(-lr * (1. - mu) / (1. - _get_value(mu_product))))
- param.addcdiv_(exp_avg, denom, value=(-lr * mu_next) / (1. - mu_product_next))
- def _multi_tensor_nadam(params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_avg_sqs: List[Tensor],
- mu_products: List[Tensor],
- state_steps: List[Tensor],
- *,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- momentum_decay: float,
- eps: float,
- differentiable: bool):
- if len(params) == 0:
- return
- assert not differentiable, "_foreach ops don't support autograd"
- grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs,
- mu_products, state_steps])
- for (grouped_params, grouped_grads, grouped_exp_avgs,
- grouped_exp_avg_sqs, grouped_mu_products, grouped_state_steps) in grouped_tensors.values():
- # update steps
- torch._foreach_add_(grouped_state_steps, 1)
- bias_correction2 = [1 - beta2 ** _get_value(step) for step in grouped_state_steps]
- mus = [beta1 * (1. - 0.5 * (0.96 ** (_get_value(step) * momentum_decay))) for step in grouped_state_steps]
- mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay)))
- for step in grouped_state_steps]
- # update mu_products
- torch._foreach_mul_(grouped_mu_products, mus)
- if weight_decay != 0:
- grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
- # Decay the first and second moment running average coefficient
- torch._foreach_mul_(grouped_exp_avgs, beta1)
- torch._foreach_add_(grouped_exp_avgs, grouped_grads, alpha=1 - beta1)
- torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
- torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)
- exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs)
- bias_correction_sqrt = [_dispatch_sqrt(bc) for bc in bias_correction2]
- torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
- denom = torch._foreach_add(exp_avg_sq_sqrt, eps)
- step_size_grads = _stack_if_compiling([(lr * (1. - mu) / (1. - _get_value(mu_product))) * -1
- for mu_product, mu in zip(grouped_mu_products, mus)])
- step_size_expavg = _stack_if_compiling([(lr * mu_next / (1. - _get_value(mu_product) * mu_next)) * -1
- for mu_product, mu_next in zip(grouped_mu_products, mu_nexts)])
- torch._foreach_addcdiv_(grouped_params, grouped_grads, denom, step_size_grads)
- torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, denom, step_size_expavg)
|