123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- from typing import Iterable, Any, Optional, Callable, Union, List, Dict
- from .optimizer import Optimizer
- class LRScheduler:
- optimizer: Optimizer = ...
- base_lrs: List[float] = ...
- last_epoch: int = ...
- verbose: bool = ...
- def __init__(self, optimizer: Optimizer, last_epoch: int = ..., verbose: bool = ...) -> None: ...
- def state_dict(self) -> Dict[str, Any]: ...
- def load_state_dict(self, state_dict: Dict[str, Any]) -> None: ...
- def get_last_lr(self) -> List[float]: ...
- def get_lr(self) -> float: ...
- def step(self, epoch: Optional[int] = ...) -> None: ...
- def print_lr(self, is_verbose: bool, group: Dict[str, Any], lr: float, epoch: Optional[int] = ...) -> None: ...
- class _LRScheduler(LRScheduler):
- ...
- class LambdaLR(LRScheduler):
- lr_lambdas: List[Callable[[int], float]] = ...
- def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ...
- class MultiplicativeLR(LRScheduler):
- lr_lambdas: List[Callable[[int], float]] = ...
- def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ...
- class StepLR(LRScheduler):
- step_size: int = ...
- gamma: float = ...
- def __init__(self, optimizer: Optimizer, step_size: int, gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
- class MultiStepLR(LRScheduler):
- milestones: Iterable[int] = ...
- gamma: float = ...
- def __init__(self, optimizer: Optimizer, milestones: Iterable[int], gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
- class ConstantLR(LRScheduler):
- factor: float = ...
- total_iters: int = ...
- def __init__(self, optimizer: Optimizer, factor: float=..., total_iters: int=..., last_epoch: int=..., verbose: bool = ...) -> None: ...
- class LinearLR(LRScheduler):
- start_factor: float = ...
- end_factor: float = ...
- total_iters: int = ...
- def __init__(self, optimizer: Optimizer, start_factor: float=..., end_factor: float= ..., total_iters: int= ..., last_epoch: int= ..., verbose: bool = ...) -> None: ...
- class ExponentialLR(LRScheduler):
- gamma: float = ...
- def __init__(self, optimizer: Optimizer, gamma: float, last_epoch: int = ..., verbose: bool = ...) -> None: ...
- class ChainedScheduler(LRScheduler):
- def __init__(self, schedulers: List[LRScheduler]) -> None: ...
- class SequentialLR(LRScheduler):
- def __init__(self, optimizer: Optimizer, schedulers: List[LRScheduler], milestones: List[int], last_epoch: int=..., verbose: bool=...) -> None: ...
- class CosineAnnealingLR(LRScheduler):
- T_max: int = ...
- eta_min: float = ...
- def __init__(self, optimizer: Optimizer, T_max: int, eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
- class ReduceLROnPlateau:
- factor: float = ...
- optimizer: Optimizer = ...
- min_lrs: List[float] = ...
- patience: int = ...
- verbose: bool = ...
- cooldown: int = ...
- cooldown_counter: int = ...
- mode: str = ...
- threshold: float = ...
- threshold_mode: str = ...
- best: Optional[float] = ...
- num_bad_epochs: Optional[int] = ...
- mode_worse: Optional[float] = ...
- eps: float = ...
- last_epoch: int = ...
- def __init__(self, optimizer: Optimizer, mode: str = ..., factor: float = ..., patience: int = ..., threshold: float = ..., threshold_mode: str = ..., cooldown: int = ..., min_lr: Union[List[float], float] = ..., eps: float = ..., verbose: bool = ...) -> None: ...
- def step(self, metrics: Any, epoch: Optional[int] = ...) -> None: ...
- @property
- def in_cooldown(self) -> bool: ...
- def is_better(self, a: Any, best: Any) -> bool: ...
- def state_dict(self) -> Dict[str, Any]: ...
- def load_state_dict(self, state_dict: Dict[str, Any]) -> None: ...
- class CyclicLR(LRScheduler):
- max_lrs: List[float] = ...
- total_size: float = ...
- step_ratio: float = ...
- mode: str = ...
- gamma: float = ...
- scale_mode: str = ...
- cycle_momentum: bool = ...
- base_momentums: List[float] = ...
- max_momentums: List[float] = ...
- def __init__(self, optimizer: Optimizer, base_lr: Union[float, List[float]], max_lr: Union[float, List[float]], step_size_up: int = ..., step_size_down: Optional[int] = ..., mode: str = ..., gamma: float = ..., scale_fn: Optional[Callable[[float], float]] = ..., scale_mode: str = ..., cycle_momentum: bool = ..., base_momentum: float = ..., max_momentum: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
- def scale_fn(self, x: Any) -> float: ...
- class CosineAnnealingWarmRestarts(LRScheduler):
- T_0: int = ...
- T_i: int = ...
- T_mult: Optional[int] = ...
- eta_min: Optional[float] = ...
- T_cur: Any = ...
- def __init__(self, optimizer: Optimizer, T_0: int, T_mult: int = ..., eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
- def step(self, epoch: Optional[Any] = ...): ...
- class OneCycleLR(LRScheduler):
- total_steps: int = ...
- anneal_func: Callable[[float, float, float], float] = ...
- cycle_momentum: bool = ...
- use_beta1: bool = ...
- def __init__(self, optimizer: Optimizer, max_lr: Union[float, List[float]], total_steps: int = ..., epochs: int = ..., steps_per_epoch: int = ..., pct_start: float = ..., anneal_strategy: str = ..., cycle_momentum: bool = ..., base_momentum: Union[float, List[float]] = ..., max_momentum: Union[float, List[float]] = ..., div_factor: float = ..., final_div_factor: float = ..., three_phase: bool = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
- class PolynomialLR(LRScheduler):
- total_iters: int = ...
- power: float = ...
- def __init__(self, optimizer: Optimizer, total_iters: int = ..., power: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|