123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- import torch
- from torch import Tensor
- from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _default_to_fused_or_foreach,
- _differentiable_doc, _foreach_doc, _maximize_doc)
- from torch._utils import is_compiling
- from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
- from typing import List, Optional
- __all__ = ["ASGD", "asgd"]
- def _to_tensor(x):
- if not isinstance(x, torch.Tensor):
- return torch.tensor(x)
- return x
- class ASGD(Optimizer):
- def __init__(
- self,
- params,
- lr=1e-2,
- lambd=1e-4,
- alpha=0.75,
- t0=1e6,
- weight_decay=0,
- foreach: Optional[bool] = None,
- maximize: bool = False,
- differentiable: bool = False,
- ):
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= weight_decay:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- defaults = dict(
- lr=lr,
- lambd=lambd,
- alpha=alpha,
- t0=t0,
- weight_decay=weight_decay,
- foreach=foreach,
- maximize=maximize,
- differentiable=differentiable,
- )
- super().__init__(params, defaults)
- def __setstate__(self, state):
- super().__setstate__(state)
- for group in self.param_groups:
- group.setdefault("foreach", None)
- group.setdefault("maximize", False)
- group.setdefault("differentiable", False)
- state_values = list(self.state.values())
- step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
- state_values[0]["step"]
- )
- if not step_is_tensor:
- for s in state_values:
- s["step"] = torch.tensor(float(s["step"]))
- eta_is_tensor = (len(state_values) != 0) and torch.is_tensor(
- state_values[0]["eta"]
- )
- if not eta_is_tensor:
- for s in state_values:
- s["eta"] = torch.tensor(s["eta"])
- mu_is_tensor = (len(state_values) != 0) and torch.is_tensor(
- state_values[0]["mu"]
- )
- if not mu_is_tensor:
- for s in state_values:
- s["mu"] = torch.tensor(float(s["mu"]))
- def _init_group(self, group, params_with_grad, grads, mus, axs, etas, state_steps):
- for p in group["params"]:
- if p.grad is not None:
- params_with_grad.append(p)
- if p.grad.is_sparse:
- raise RuntimeError("ASGD does not support sparse gradients")
- grads.append(p.grad)
- state = self.state[p]
- # State initialization
- if len(state) == 0:
- state["step"] = torch.tensor(0.0)
- state["eta"] = torch.tensor(group["lr"])
- state["mu"] = torch.tensor(1.0)
- state["ax"] = torch.zeros_like(
- p, memory_format=torch.preserve_format
- )
- mus.append(state["mu"])
- axs.append(state["ax"])
- etas.append(state["eta"])
- state_steps.append(state["step"])
- @_use_grad_for_differentiable
- def step(self, closure=None):
- """Performs a single optimization step.
- Args:
- closure (Callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- with torch.enable_grad():
- loss = closure()
- for group in self.param_groups:
- params_with_grad = []
- grads = []
- mus = []
- axs = []
- etas = []
- state_steps = []
- self._init_group(group, params_with_grad, grads, mus, axs, etas, state_steps)
- asgd(
- params_with_grad,
- grads,
- axs,
- mus,
- etas,
- state_steps,
- lambd=group["lambd"],
- lr=group["lr"],
- t0=group["t0"],
- alpha=group["alpha"],
- weight_decay=group["weight_decay"],
- foreach=group["foreach"],
- maximize=group["maximize"],
- differentiable=group["differentiable"],
- )
- return loss
- ASGD.__doc__ = r"""Implements Averaged Stochastic Gradient Descent.
- It has been proposed in `Acceleration of stochastic approximation by
- averaging`_.
- Args:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 1e-2)
- lambd (float, optional): decay term (default: 1e-4)
- alpha (float, optional): power for eta update (default: 0.75)
- t0 (float, optional): point at which to start averaging (default: 1e6)
- weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
- {foreach}
- {maximize}
- {differentiable}
- .. _Acceleration of stochastic approximation by averaging:
- https://dl.acm.org/citation.cfm?id=131098
- """.format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc)
- def asgd(
- params: List[Tensor],
- grads: List[Tensor],
- axs: List[Tensor],
- mus: List[Tensor],
- etas: List[Tensor],
- state_steps: List[Tensor],
- # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
- # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
- foreach: Optional[bool] = None,
- maximize: bool = False,
- differentiable: bool = False,
- *,
- lambd: float,
- lr: float,
- t0: float,
- alpha: float,
- weight_decay: float,
- ):
- r"""Functional API that performs asgd algorithm computation.
- See :class:`~torch.optim.ASGD` for details.
- """
- if foreach is None:
- _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
- if foreach and torch.jit.is_scripting():
- raise RuntimeError("torch.jit.script not supported with foreach optimizers")
- if foreach and not torch.jit.is_scripting():
- func = _multi_tensor_asgd
- else:
- func = _single_tensor_asgd
- func(
- params,
- grads,
- axs,
- mus,
- etas,
- state_steps,
- lambd=lambd,
- lr=lr,
- t0=t0,
- alpha=alpha,
- weight_decay=weight_decay,
- maximize=maximize,
- differentiable=differentiable,
- )
- def _single_tensor_asgd(
- params: List[Tensor],
- grads: List[Tensor],
- axs: List[Tensor],
- mus: List[Tensor],
- etas: List[Tensor],
- state_steps: List[Tensor],
- *,
- lambd: float,
- lr: float,
- t0: float,
- alpha: float,
- weight_decay: float,
- maximize: bool,
- differentiable: bool,
- ):
- def _to_tensor(x):
- if not isinstance(x, torch.Tensor):
- return torch.tensor(x)
- return x
- for i, param in enumerate(params):
- grad = grads[i]
- grad = grad if not maximize else -grad
- mu = mus[i]
- ax = axs[i]
- eta = etas[i]
- step_t = state_steps[i]
- if torch.is_complex(param):
- grad = torch.view_as_real(grad)
- param = torch.view_as_real(param)
- ax = torch.view_as_real(ax)
- # update step
- step_t += 1
- step = _get_value(step_t)
- if weight_decay != 0:
- grad = grad.add(param, alpha=weight_decay)
- eta_value = _get_value(eta)
- # decay term
- param.mul_(1 - lambd * eta_value)
- # update parameter
- param.add_(grad, alpha=-eta_value)
- # averaging
- if is_compiling() or mu.item() != 1:
- ax.add_(param.sub(ax).mul(mu))
- else:
- ax.copy_(param)
- new_eta = _to_tensor(lr / ((1 + lambd * lr * step) ** alpha))
- eta.copy_(new_eta)
- new_mu = _to_tensor(1 / max(1, step - t0))
- mu.copy_(new_mu)
- def _multi_tensor_asgd(
- params: List[Tensor],
- grads: List[Tensor],
- axs: List[Tensor],
- mus: List[Tensor],
- etas: List[Tensor],
- state_steps: List[Tensor],
- *,
- lambd: float,
- lr: float,
- t0: float,
- alpha: float,
- weight_decay: float,
- maximize: bool,
- differentiable: bool,
- ):
- if len(params) == 0:
- return
- assert not differentiable, "_foreach ops don't support autograd"
- grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, axs, mus, etas, state_steps])
- for (grouped_params, grouped_grads, grouped_axs, grouped_mus,
- grouped_etas, grouped_state_steps) in grouped_tensors.values():
- if maximize:
- grouped_grads = torch._foreach_neg(grouped_grads)
- def _view_complex_as_real(tensor_list):
- return [
- torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list
- ]
- grouped_grads = _view_complex_as_real(grouped_grads)
- grouped_params = _view_complex_as_real(grouped_params)
- grouped_axs = _view_complex_as_real(grouped_axs)
- # update step
- torch._foreach_add_(grouped_state_steps, 1)
- if weight_decay != 0:
- grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
- # decay term
- eta = _get_value(grouped_etas[0])
- torch._foreach_mul_(grouped_params, 1 - lambd * eta)
- # update parameter
- torch._foreach_add_(grouped_params, grouped_grads, alpha=-eta)
- # averaging
- for i in range(len(grouped_axs)):
- if is_compiling() or grouped_mus[i].item() != 1:
- grouped_axs[i].add_(grouped_params[i].sub(grouped_axs[i]).mul(grouped_mus[i]))
- else:
- grouped_axs[i].copy_(grouped_params[i])
- # update eta and mu
- for i in range(len(grouped_mus)):
- new_eta = _to_tensor(
- lr / (1 + lambd * lr * _get_value(grouped_state_steps[i]) ** alpha)
- )
- grouped_etas[i].copy_(new_eta)
- new_mu = _to_tensor(1 / max(1, _get_value(grouped_state_steps[i]) - t0))
- grouped_mus[i].copy_(new_mu)
|