123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- import torch
- from torch import Tensor
- from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _stack_if_compiling,
- _default_to_fused_or_foreach, _differentiable_doc, _maximize_doc, _foreach_doc)
- from typing import List, Optional
- from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
- __all__ = ["Adamax", "adamax"]
- class Adamax(Optimizer):
- def __init__(
- self,
- params,
- lr=2e-3,
- betas=(0.9, 0.999),
- eps=1e-8,
- weight_decay=0,
- foreach: Optional[bool] = None,
- *,
- maximize: bool = False,
- differentiable: bool = False,
- ):
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
- if not 0.0 <= weight_decay:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- defaults = dict(
- lr=lr,
- betas=betas,
- eps=eps,
- weight_decay=weight_decay,
- foreach=foreach,
- maximize=maximize,
- differentiable=differentiable,
- )
- super().__init__(params, defaults)
- def __setstate__(self, state):
- super().__setstate__(state)
- for group in self.param_groups:
- group.setdefault("foreach", None)
- group.setdefault("maximize", False)
- group.setdefault("differentiable", False)
- state_values = list(self.state.values())
- step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
- state_values[0]["step"]
- )
- if not step_is_tensor:
- for s in state_values:
- s["step"] = torch.tensor(float(s["step"]))
- def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_infs, state_steps):
- for p in group["params"]:
- if p.grad is None:
- continue
- params_with_grad.append(p)
- if p.grad.is_sparse:
- raise RuntimeError("Adamax does not support sparse gradients")
- grads.append(p.grad)
- state = self.state[p]
- # State initialization
- if len(state) == 0:
- state["step"] = torch.tensor(0.0)
- state["exp_avg"] = torch.zeros_like(
- p, memory_format=torch.preserve_format
- )
- state["exp_inf"] = torch.zeros_like(
- p, memory_format=torch.preserve_format
- )
- exp_avgs.append(state["exp_avg"])
- exp_infs.append(state["exp_inf"])
- state_steps.append(state["step"])
- @_use_grad_for_differentiable
- def step(self, closure=None):
- """Performs a single optimization step.
- Args:
- closure (Callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- with torch.enable_grad():
- loss = closure()
- for group in self.param_groups:
- params_with_grad = []
- grads = []
- exp_avgs = []
- exp_infs = []
- state_steps = []
- beta1, beta2 = group["betas"]
- eps = group["eps"]
- lr = group["lr"]
- weight_decay = group["weight_decay"]
- foreach = group["foreach"]
- maximize = group["maximize"]
- differentiable = group["differentiable"]
- self._init_group(group, params_with_grad, grads, exp_avgs, exp_infs, state_steps)
- adamax(
- params_with_grad,
- grads,
- exp_avgs,
- exp_infs,
- state_steps,
- eps=eps,
- beta1=beta1,
- beta2=beta2,
- lr=lr,
- weight_decay=weight_decay,
- foreach=foreach,
- maximize=maximize,
- differentiable=differentiable,
- )
- return loss
- Adamax.__doc__ = r"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
- .. math::
- \begin{aligned}
- &\rule{110mm}{0.4pt} \\
- &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2
- \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
- \: \lambda \text{ (weight decay)}, \\
- &\hspace{13mm} \epsilon \text{ (epsilon)} \\
- &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
- u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex]
- &\rule{110mm}{0.4pt} \\
- &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
- &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
- &\hspace{5mm}if \: \lambda \neq 0 \\
- &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
- &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
- &\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\
- &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
- &\rule{110mm}{0.4pt} \\[-1.ex]
- &\bf{return} \: \theta_t \\[-1.ex]
- &\rule{110mm}{0.4pt} \\[-1.ex]
- \end{aligned}
- For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
- """ + r"""
- Args:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 2e-3)
- betas (Tuple[float, float], optional): coefficients used for computing
- running averages of gradient and its square
- eps (float, optional): term added to the denominator to improve
- numerical stability (default: 1e-8)
- weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
- {foreach}
- {maximize}
- {differentiable}
- .. _Adam\: A Method for Stochastic Optimization:
- https://arxiv.org/abs/1412.6980
- """.format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc)
- def adamax(
- params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_infs: List[Tensor],
- state_steps: List[Tensor],
- # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
- # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
- foreach: Optional[bool] = None,
- maximize: bool = False,
- differentiable: bool = False,
- *,
- eps: float,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- ):
- r"""Functional API that performs adamax algorithm computation.
- See :class:`~torch.optim.Adamax` for details.
- """
- if not all(isinstance(t, torch.Tensor) for t in state_steps):
- raise RuntimeError(
- "API has changed, `state_steps` argument must contain a list of singleton tensors"
- )
- if foreach is None:
- _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
- if foreach and torch.jit.is_scripting():
- raise RuntimeError("torch.jit.script not supported with foreach optimizers")
- if foreach and not torch.jit.is_scripting():
- func = _multi_tensor_adamax
- else:
- func = _single_tensor_adamax
- func(
- params,
- grads,
- exp_avgs,
- exp_infs,
- state_steps,
- eps=eps,
- beta1=beta1,
- beta2=beta2,
- lr=lr,
- weight_decay=weight_decay,
- maximize=maximize,
- differentiable=differentiable,
- )
- def _single_tensor_adamax(
- params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_infs: List[Tensor],
- state_steps: List[Tensor],
- *,
- eps: float,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- maximize: bool,
- differentiable: bool,
- ):
- for i, param in enumerate(params):
- grad = grads[i]
- grad = grad if not maximize else -grad
- exp_avg = exp_avgs[i]
- exp_inf = exp_infs[i]
- step_t = state_steps[i]
- # update step
- step_t += 1
- if weight_decay != 0:
- grad = grad.add(param, alpha=weight_decay)
- if torch.is_complex(param):
- param = torch.view_as_real(param)
- grad = torch.view_as_real(grad)
- exp_avg = torch.view_as_real(exp_avg)
- exp_inf = torch.view_as_real(exp_inf)
- # Update biased first moment estimate.
- exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
- # Update the exponentially weighted infinity norm.
- norm_buf = torch.cat(
- [exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0
- )
- if not differentiable:
- torch.amax(norm_buf, 0, keepdim=False, out=exp_inf)
- else:
- exp_inf.copy_(torch.amax(norm_buf, 0, keepdim=False))
- bias_correction = 1 - beta1 ** _get_value(step_t)
- clr = lr / bias_correction
- param.addcdiv_(exp_avg, exp_inf, value=-clr)
- def _multi_tensor_adamax(
- params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_infs: List[Tensor],
- state_steps: List[Tensor],
- *,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- eps: float,
- maximize: bool,
- differentiable: bool,
- ):
- assert not differentiable, "_foreach ops don't support autograd"
- if len(params) == 0:
- return
- grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_infs, state_steps])
- for grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_infs, grouped_state_steps in grouped_tensors.values():
- if maximize:
- grouped_grads = torch._foreach_neg(grouped_grads)
- grouped_params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_params]
- grouped_grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_grads]
- grouped_exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_avgs]
- grouped_exp_infs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_infs]
- # Update steps
- torch._foreach_add_(grouped_state_steps, 1)
- if weight_decay != 0:
- grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
- # Update biased first moment estimate.
- torch._foreach_mul_(grouped_exp_avgs, beta1)
- torch._foreach_add_(grouped_exp_avgs, grouped_grads, alpha=1 - beta1)
- # Update the exponentially weighted infinity norm.
- torch._foreach_mul_(grouped_exp_infs, beta2)
- for exp_inf, grad in zip(grouped_exp_infs, grouped_grads):
- norm_buf = torch.cat(
- [exp_inf.unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0
- )
- torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long()))
- bias_corrections = [1 - beta1 ** _get_value(step) for step in grouped_state_steps]
- clr = _stack_if_compiling([-1 * (lr / bias_correction) for bias_correction in bias_corrections])
- torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, grouped_exp_infs, clr)
|