adamax.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. import torch
  2. from torch import Tensor
  3. from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _stack_if_compiling,
  4. _default_to_fused_or_foreach, _differentiable_doc, _maximize_doc, _foreach_doc)
  5. from typing import List, Optional
  6. from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
  7. __all__ = ["Adamax", "adamax"]
  8. class Adamax(Optimizer):
  9. def __init__(
  10. self,
  11. params,
  12. lr=2e-3,
  13. betas=(0.9, 0.999),
  14. eps=1e-8,
  15. weight_decay=0,
  16. foreach: Optional[bool] = None,
  17. *,
  18. maximize: bool = False,
  19. differentiable: bool = False,
  20. ):
  21. if not 0.0 <= lr:
  22. raise ValueError("Invalid learning rate: {}".format(lr))
  23. if not 0.0 <= eps:
  24. raise ValueError("Invalid epsilon value: {}".format(eps))
  25. if not 0.0 <= betas[0] < 1.0:
  26. raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
  27. if not 0.0 <= betas[1] < 1.0:
  28. raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
  29. if not 0.0 <= weight_decay:
  30. raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
  31. defaults = dict(
  32. lr=lr,
  33. betas=betas,
  34. eps=eps,
  35. weight_decay=weight_decay,
  36. foreach=foreach,
  37. maximize=maximize,
  38. differentiable=differentiable,
  39. )
  40. super().__init__(params, defaults)
  41. def __setstate__(self, state):
  42. super().__setstate__(state)
  43. for group in self.param_groups:
  44. group.setdefault("foreach", None)
  45. group.setdefault("maximize", False)
  46. group.setdefault("differentiable", False)
  47. state_values = list(self.state.values())
  48. step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
  49. state_values[0]["step"]
  50. )
  51. if not step_is_tensor:
  52. for s in state_values:
  53. s["step"] = torch.tensor(float(s["step"]))
  54. def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_infs, state_steps):
  55. for p in group["params"]:
  56. if p.grad is None:
  57. continue
  58. params_with_grad.append(p)
  59. if p.grad.is_sparse:
  60. raise RuntimeError("Adamax does not support sparse gradients")
  61. grads.append(p.grad)
  62. state = self.state[p]
  63. # State initialization
  64. if len(state) == 0:
  65. state["step"] = torch.tensor(0.0)
  66. state["exp_avg"] = torch.zeros_like(
  67. p, memory_format=torch.preserve_format
  68. )
  69. state["exp_inf"] = torch.zeros_like(
  70. p, memory_format=torch.preserve_format
  71. )
  72. exp_avgs.append(state["exp_avg"])
  73. exp_infs.append(state["exp_inf"])
  74. state_steps.append(state["step"])
  75. @_use_grad_for_differentiable
  76. def step(self, closure=None):
  77. """Performs a single optimization step.
  78. Args:
  79. closure (Callable, optional): A closure that reevaluates the model
  80. and returns the loss.
  81. """
  82. loss = None
  83. if closure is not None:
  84. with torch.enable_grad():
  85. loss = closure()
  86. for group in self.param_groups:
  87. params_with_grad = []
  88. grads = []
  89. exp_avgs = []
  90. exp_infs = []
  91. state_steps = []
  92. beta1, beta2 = group["betas"]
  93. eps = group["eps"]
  94. lr = group["lr"]
  95. weight_decay = group["weight_decay"]
  96. foreach = group["foreach"]
  97. maximize = group["maximize"]
  98. differentiable = group["differentiable"]
  99. self._init_group(group, params_with_grad, grads, exp_avgs, exp_infs, state_steps)
  100. adamax(
  101. params_with_grad,
  102. grads,
  103. exp_avgs,
  104. exp_infs,
  105. state_steps,
  106. eps=eps,
  107. beta1=beta1,
  108. beta2=beta2,
  109. lr=lr,
  110. weight_decay=weight_decay,
  111. foreach=foreach,
  112. maximize=maximize,
  113. differentiable=differentiable,
  114. )
  115. return loss
  116. Adamax.__doc__ = r"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
  117. .. math::
  118. \begin{aligned}
  119. &\rule{110mm}{0.4pt} \\
  120. &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2
  121. \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
  122. \: \lambda \text{ (weight decay)}, \\
  123. &\hspace{13mm} \epsilon \text{ (epsilon)} \\
  124. &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
  125. u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex]
  126. &\rule{110mm}{0.4pt} \\
  127. &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
  128. &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
  129. &\hspace{5mm}if \: \lambda \neq 0 \\
  130. &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
  131. &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
  132. &\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\
  133. &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
  134. &\rule{110mm}{0.4pt} \\[-1.ex]
  135. &\bf{return} \: \theta_t \\[-1.ex]
  136. &\rule{110mm}{0.4pt} \\[-1.ex]
  137. \end{aligned}
  138. For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
  139. """ + r"""
  140. Args:
  141. params (iterable): iterable of parameters to optimize or dicts defining
  142. parameter groups
  143. lr (float, optional): learning rate (default: 2e-3)
  144. betas (Tuple[float, float], optional): coefficients used for computing
  145. running averages of gradient and its square
  146. eps (float, optional): term added to the denominator to improve
  147. numerical stability (default: 1e-8)
  148. weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
  149. {foreach}
  150. {maximize}
  151. {differentiable}
  152. .. _Adam\: A Method for Stochastic Optimization:
  153. https://arxiv.org/abs/1412.6980
  154. """.format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc)
  155. def adamax(
  156. params: List[Tensor],
  157. grads: List[Tensor],
  158. exp_avgs: List[Tensor],
  159. exp_infs: List[Tensor],
  160. state_steps: List[Tensor],
  161. # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
  162. # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
  163. foreach: Optional[bool] = None,
  164. maximize: bool = False,
  165. differentiable: bool = False,
  166. *,
  167. eps: float,
  168. beta1: float,
  169. beta2: float,
  170. lr: float,
  171. weight_decay: float,
  172. ):
  173. r"""Functional API that performs adamax algorithm computation.
  174. See :class:`~torch.optim.Adamax` for details.
  175. """
  176. if not all(isinstance(t, torch.Tensor) for t in state_steps):
  177. raise RuntimeError(
  178. "API has changed, `state_steps` argument must contain a list of singleton tensors"
  179. )
  180. if foreach is None:
  181. _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
  182. if foreach and torch.jit.is_scripting():
  183. raise RuntimeError("torch.jit.script not supported with foreach optimizers")
  184. if foreach and not torch.jit.is_scripting():
  185. func = _multi_tensor_adamax
  186. else:
  187. func = _single_tensor_adamax
  188. func(
  189. params,
  190. grads,
  191. exp_avgs,
  192. exp_infs,
  193. state_steps,
  194. eps=eps,
  195. beta1=beta1,
  196. beta2=beta2,
  197. lr=lr,
  198. weight_decay=weight_decay,
  199. maximize=maximize,
  200. differentiable=differentiable,
  201. )
  202. def _single_tensor_adamax(
  203. params: List[Tensor],
  204. grads: List[Tensor],
  205. exp_avgs: List[Tensor],
  206. exp_infs: List[Tensor],
  207. state_steps: List[Tensor],
  208. *,
  209. eps: float,
  210. beta1: float,
  211. beta2: float,
  212. lr: float,
  213. weight_decay: float,
  214. maximize: bool,
  215. differentiable: bool,
  216. ):
  217. for i, param in enumerate(params):
  218. grad = grads[i]
  219. grad = grad if not maximize else -grad
  220. exp_avg = exp_avgs[i]
  221. exp_inf = exp_infs[i]
  222. step_t = state_steps[i]
  223. # update step
  224. step_t += 1
  225. if weight_decay != 0:
  226. grad = grad.add(param, alpha=weight_decay)
  227. if torch.is_complex(param):
  228. param = torch.view_as_real(param)
  229. grad = torch.view_as_real(grad)
  230. exp_avg = torch.view_as_real(exp_avg)
  231. exp_inf = torch.view_as_real(exp_inf)
  232. # Update biased first moment estimate.
  233. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
  234. # Update the exponentially weighted infinity norm.
  235. norm_buf = torch.cat(
  236. [exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0
  237. )
  238. if not differentiable:
  239. torch.amax(norm_buf, 0, keepdim=False, out=exp_inf)
  240. else:
  241. exp_inf.copy_(torch.amax(norm_buf, 0, keepdim=False))
  242. bias_correction = 1 - beta1 ** _get_value(step_t)
  243. clr = lr / bias_correction
  244. param.addcdiv_(exp_avg, exp_inf, value=-clr)
  245. def _multi_tensor_adamax(
  246. params: List[Tensor],
  247. grads: List[Tensor],
  248. exp_avgs: List[Tensor],
  249. exp_infs: List[Tensor],
  250. state_steps: List[Tensor],
  251. *,
  252. beta1: float,
  253. beta2: float,
  254. lr: float,
  255. weight_decay: float,
  256. eps: float,
  257. maximize: bool,
  258. differentiable: bool,
  259. ):
  260. assert not differentiable, "_foreach ops don't support autograd"
  261. if len(params) == 0:
  262. return
  263. grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_infs, state_steps])
  264. for grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_infs, grouped_state_steps in grouped_tensors.values():
  265. if maximize:
  266. grouped_grads = torch._foreach_neg(grouped_grads)
  267. grouped_params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_params]
  268. grouped_grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_grads]
  269. grouped_exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_avgs]
  270. grouped_exp_infs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_infs]
  271. # Update steps
  272. torch._foreach_add_(grouped_state_steps, 1)
  273. if weight_decay != 0:
  274. grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
  275. # Update biased first moment estimate.
  276. torch._foreach_mul_(grouped_exp_avgs, beta1)
  277. torch._foreach_add_(grouped_exp_avgs, grouped_grads, alpha=1 - beta1)
  278. # Update the exponentially weighted infinity norm.
  279. torch._foreach_mul_(grouped_exp_infs, beta2)
  280. for exp_inf, grad in zip(grouped_exp_infs, grouped_grads):
  281. norm_buf = torch.cat(
  282. [exp_inf.unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0
  283. )
  284. torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long()))
  285. bias_corrections = [1 - beta1 ** _get_value(step) for step in grouped_state_steps]
  286. clr = _stack_if_compiling([-1 * (lr / bias_correction) for bias_correction in bias_corrections])
  287. torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, grouped_exp_infs, clr)