123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- import warnings
- from typing import Union, Iterable, List, Dict, Tuple, Optional
- import torch
- from torch import Tensor, inf
- from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype, _has_foreach_support
- _tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]]
- __all__ = ['clip_grad_norm_', 'clip_grad_norm', 'clip_grad_value_']
- def clip_grad_norm_(
- parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0,
- error_if_nonfinite: bool = False, foreach: Optional[bool] = None) -> torch.Tensor:
- r"""Clips gradient norm of an iterable of parameters.
- The norm is computed over all gradients together, as if they were
- concatenated into a single vector. Gradients are modified in-place.
- Args:
- parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
- single Tensor that will have gradients normalized
- max_norm (float): max norm of the gradients
- norm_type (float): type of the used p-norm. Can be ``'inf'`` for
- infinity norm.
- error_if_nonfinite (bool): if True, an error is thrown if the total
- norm of the gradients from :attr:`parameters` is ``nan``,
- ``inf``, or ``-inf``. Default: False (will switch to True in the future)
- foreach (bool): use the faster foreach-based implementation.
- If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently
- fall back to the slow implementation for other device types.
- Default: ``None``
- Returns:
- Total norm of the parameter gradients (viewed as a single vector).
- """
- if isinstance(parameters, torch.Tensor):
- parameters = [parameters]
- grads = [p.grad for p in parameters if p.grad is not None]
- max_norm = float(max_norm)
- norm_type = float(norm_type)
- if len(grads) == 0:
- return torch.tensor(0.)
- first_device = grads[0].device
- grouped_grads: Dict[Tuple[torch.device, torch.dtype], List[List[Tensor]]] \
- = _group_tensors_by_device_and_dtype([[g.detach() for g in grads]]) # type: ignore[assignment]
- if norm_type == inf:
- norms = [g.detach().abs().max().to(first_device) for g in grads]
- total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
- else:
- norms = []
- for ((device, _), [grads]) in grouped_grads.items():
- if (foreach is None or foreach) and _has_foreach_support(grads, device=device):
- norms.extend(torch._foreach_norm(grads, norm_type))
- elif foreach:
- raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors')
- else:
- norms.extend([torch.norm(g, norm_type) for g in grads])
- total_norm = torch.norm(torch.stack([norm.to(first_device) for norm in norms]), norm_type)
- if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()):
- raise RuntimeError(
- f'The total norm of order {norm_type} for gradients from '
- '`parameters` is non-finite, so it cannot be clipped. To disable '
- 'this error and scale the gradients by the non-finite norm anyway, '
- 'set `error_if_nonfinite=False`')
- clip_coef = max_norm / (total_norm + 1e-6)
- # Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so
- # avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization
- # when the gradients do not reside in CPU memory.
- clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
- for ((device, _), [grads]) in grouped_grads.items():
- if (foreach is None or foreach) and _has_foreach_support(grads, device=device):
- torch._foreach_mul_(grads, clip_coef_clamped.to(device)) # type: ignore[call-overload]
- elif foreach:
- raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors')
- else:
- clip_coef_clamped_device = clip_coef_clamped.to(device)
- for g in grads:
- g.detach().mul_(clip_coef_clamped_device)
- return total_norm
- def clip_grad_norm(
- parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.,
- error_if_nonfinite: bool = False, foreach: Optional[bool] = None) -> torch.Tensor:
- r"""Clips gradient norm of an iterable of parameters.
- .. warning::
- This method is now deprecated in favor of
- :func:`torch.nn.utils.clip_grad_norm_`.
- """
- warnings.warn("torch.nn.utils.clip_grad_norm is now deprecated in favor "
- "of torch.nn.utils.clip_grad_norm_.", stacklevel=2)
- return clip_grad_norm_(parameters, max_norm, norm_type, error_if_nonfinite, foreach)
- def clip_grad_value_(parameters: _tensor_or_tensors, clip_value: float, foreach: Optional[bool] = None) -> None:
- r"""Clips gradient of an iterable of parameters at specified value.
- Gradients are modified in-place.
- Args:
- parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
- single Tensor that will have gradients normalized
- clip_value (float): maximum allowed value of the gradients.
- The gradients are clipped in the range
- :math:`\left[\text{-clip\_value}, \text{clip\_value}\right]`
- foreach (bool): use the faster foreach-based implementation
- If ``None``, use the foreach implementation for CUDA and CPU native tensors and
- silently fall back to the slow implementation for other device types.
- Default: ``None``
- """
- if isinstance(parameters, torch.Tensor):
- parameters = [parameters]
- clip_value = float(clip_value)
- grads = [p.grad for p in parameters if p.grad is not None]
- grouped_grads: Dict[Tuple[torch.device, torch.dtype], List[List[Tensor]]] \
- = _group_tensors_by_device_and_dtype([grads]) # type: ignore[assignment]
- for ((device, _), [grads]) in grouped_grads.items():
- if (foreach is None or foreach) and _has_foreach_support(grads, device=device):
- torch._foreach_clamp_min_(grads, -clip_value)
- torch._foreach_clamp_max_(grads, clip_value)
- elif foreach:
- raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors')
- else:
- for grad in grads:
- grad.data.clamp_(min=-clip_value, max=clip_value)
|