1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921 |
- import copy
- import inspect
- import itertools
- import logging
- import os
- import sys
- import warnings
- import weakref
- from contextlib import contextmanager
- from dataclasses import dataclass, fields, is_dataclass
- from enum import Enum, auto
- from typing import Callable, Any, Type
- import torch
- import torch.distributed as dist
- from torch.autograd import Function, Variable
- from torch.distributed.algorithms.join import (
- Join,
- Joinable,
- JoinHook,
- )
- from torch.utils._pytree import tree_flatten, tree_unflatten
- RPC_AVAILABLE = False
- if dist.is_available():
- from torch.distributed.utils import (
- _verify_param_shape_across_processes,
- _sync_module_states,
- _to_kwargs,
- )
- from torch.distributed.distributed_c10d import ReduceOp, _get_default_group
- if torch.distributed.rpc.is_available():
- RPC_AVAILABLE = True
- from torch.distributed.rpc import RRef
- from torch._utils import _get_device_index
- from ..modules import Module
- from ._replicated_tensor_ddp_utils import _ddp_with_replicated_tensor_enabled
- from .scatter_gather import gather, scatter_kwargs # noqa: F401
- __all__ = ["DistributedDataParallel"]
- logger = logging.getLogger(__name__)
- def _tree_flatten_with_rref(output):
- output_is_rref = RPC_AVAILABLE and isinstance(output, RRef)
- if output_is_rref:
- output_tensor_list, treespec = tree_flatten(output.local_value())
- else:
- output_tensor_list, treespec = tree_flatten(output)
- # Need to return flattened tensors, spec to re-pack them, as well
- # as if the return type was actually an RRef to reconstruct.
- return output_tensor_list, treespec, output_is_rref
- def _tree_unflatten_with_rref(output, treespec, output_is_rref):
- output = tree_unflatten(output, treespec)
- if output_is_rref:
- output = RRef(output)
- return output
- def _find_tensors(obj):
- r"""
- Recursively find all tensors contained in the specified object.
- """
- if RPC_AVAILABLE and isinstance(obj, RRef):
- # If the current node is the owner of the RRef, unwrap it and try to
- # find Tensors.
- # TODO: Expand to remote RRefs.
- if obj.is_owner():
- return _find_tensors(obj.local_value())
- if isinstance(obj, torch.Tensor):
- return [obj]
- if isinstance(obj, (list, tuple)):
- return itertools.chain(*map(_find_tensors, obj))
- if isinstance(obj, dict):
- return itertools.chain(*map(_find_tensors, obj.values()))
- if is_dataclass(obj):
- return itertools.chain(
- *map(_find_tensors, (getattr(obj, f.name) for f in fields(obj)))
- )
- return []
- def _dump_DDP_relevant_env_vars():
- relevant_env_vars = [
- "RANK",
- "LOCAL_RANK",
- "WORLD_SIZE",
- "MASTER_PORT",
- "MASTER_ADDR",
- "CUDA_VISIBLE_DEVICES",
- "GLOO_SOCKET_IFNAME",
- "GLOO_DEVICE_TRANSPORT",
- "NCCL_SOCKET_IFNAME",
- "NCCL_BLOCKING_WAIT",
- "NCCL_DEBUG",
- "NCCL_DEBUG_SUBSYS",
- "NCCL_IB_DISABLE",
- # More NCCL env vars:
- "NCCL_P2P_DISABLE",
- "NCCL_P2P_LEVEL",
- "NCCL_SHM_DISABLE",
- "NCCL_SOCKET_NTHREADS",
- "NCCL_NSOCKS_PERTHREAD",
- "NCCL_BUFFSIZE",
- "NCCL_NTHREADS",
- "NCCL_RINGS",
- "NCCL_MAX_NCHANNELS",
- "NCCL_MIN_NCHANNELS",
- "NCCL_CHECKS_DISABLE",
- "NCCL_CHECK_POINTERS",
- "NCCL_LAUNCH_MODE",
- "NCCL_IB_HCA",
- "NCCL_IB_TIMEOUT",
- "NCCL_IB_RETRY_CNT",
- "NCCL_IB_GID_INDEX",
- "NCCL_IB_SL",
- "NCCL_IB_TC",
- "NCCL_IB_AR_THRESHOLD",
- "NCCL_IB_CUDA_SUPPORT",
- "NCCL_NET_GDR_LEVEL",
- "NCCL_NET_GDR_READ",
- "NCCL_SINGLE_RING_THRESHOLD",
- "NCCL_LL_THRESHOLD",
- "NCCL_TREE_THRESHOLD",
- "NCCL_ALGO",
- "NCCL_PROTO",
- "NCCL_IGNORE_CPU_AFFINITY",
- "NCCL_DEBUG_FILE",
- "NCCL_COLLNET_ENABLE",
- "NCCL_TOPO_FILE",
- "NCCL_TOPO_DUMP_FILE",
- "NCCL_ASYNC_ERROR_HANDLING",
- ]
- formatted_output = ""
- for var in relevant_env_vars:
- value = os.environ[var] if var in os.environ else "N/A"
- formatted_output += "env:%s=%s\n" % (var, value)
- print(formatted_output)
- class _BufferCommHookLocation(Enum):
- PRE_FORWARD = auto()
- POST_FORWARD = auto()
- @dataclass
- class _BufferCommHook:
- buffer_comm_hook: Callable
- buffer_comm_hook_state: Any
- buffer_comm_hook_location: _BufferCommHookLocation
- # Add a DDPSink to run various functions when backwards starts, such as
- # queueing call back of out-most backward/graph task,
- # this helps call back is fired after all gradients' calculation
- # is completed.
- class _DDPSink(Function):
- @staticmethod
- def forward(ctx, reducer, state_dict, *inputs):
- # set_materialize_grads(False) will ensure that None gradients stay as
- # None and are not filled with zeros.
- ctx.set_materialize_grads(False)
- ctx.reducer = reducer
- ctx.state_dict = state_dict
- ret = tuple(
- inp.clone() if isinstance(inp, torch.Tensor) else inp
- for inp in inputs
- )
- return ret
- @staticmethod
- def backward(ctx, *grad_outputs):
- state_dict = ctx.state_dict
- # Enqueue delay allreduce for static graph training on the first
- # iteration.
- if (
- ctx.state_dict["static_graph"]
- and ctx.state_dict["num_iterations"] == 1
- ):
- Variable._execution_engine.queue_callback( # type: ignore[call-arg,misc]
- ctx.reducer._delay_all_reduce
- )
- return (None, None, *grad_outputs)
- class _DDPJoinHook(JoinHook):
- def __init__(self, ddp, divide_by_initial_world_size):
- """
- Sets config variables for internal usage.
- """
- assert isinstance(ddp, DistributedDataParallel), (
- "DDP join hook requires passing in a DistributedDataParallel "
- "instance as the state"
- )
- assert ddp.logger is not None
- ddp.logger._set_uneven_input_join()
- self.ddp = ddp
- self.ddp._divide_by_initial_world_size = divide_by_initial_world_size
- super().__init__()
- def main_hook(self):
- """
- Shadows the DDP collective communication operations in the forward and
- backward passes.
- """
- ddp = self.ddp
- # Buckets are rebuilt only once during a training period
- ddp.reducer._rebuild_buckets()
- # Schedule a broadcast if we are syncing module buffers in the
- # forward pass
- # TODO: make DDP uneven inputs context manager support buffer
- # comm hook (https://github.com/pytorch/pytorch/issues/65436)
- ddp._check_and_sync_module_buffers()
- # Check if need to sync in the backward pass
- work = ddp._check_global_requires_backward_grad_sync(
- is_joined_rank=True
- )
- work.wait()
- should_sync_backwards = work.result()[0].item() != 0
- # Forward parameter sync is disabled in the next iteration if we
- # are skipping gradient sync this iteration, so set
- # `require_forward_param_sync` accordingly
- ddp.require_forward_param_sync = should_sync_backwards
- if not should_sync_backwards:
- return
- # Schedule one allreduce per gradient bucket to match the backward
- # pass allreduce
- ddp._match_all_reduce_for_bwd_pass()
- # Check if we need to allreduce locally unused parameters
- if ddp.find_unused_parameters:
- ddp._match_unused_params_allreduce()
- # Rebuilt parameters are pushed only once during a training period
- ddp.reducer._push_all_rebuilt_params()
- def post_hook(self, is_last_joiner: bool):
- """
- Syncs the final model to ensure that the model is the same across all
- processes.
- """
- self.ddp._sync_final_model(is_last_joiner)
- class DistributedDataParallel(Module, Joinable):
- r"""Implements distributed data parallelism that is based on
- ``torch.distributed`` package at the module level.
- This container provides data parallelism by synchronizing gradients
- across each model replica. The devices to synchronize across are
- specified by the input ``process_group``, which is the entire world
- by default. Note that ``DistributedDataParallel`` does not chunk or
- otherwise shard the input across participating GPUs; the user is
- responsible for defining how to do so, for example through the use
- of a :class:`DistributedSampler`.
- See also: :ref:`distributed-basics` and :ref:`cuda-nn-ddp-instead`.
- The same constraints on input as in :class:`torch.nn.DataParallel` apply.
- Creation of this class requires that ``torch.distributed`` to be already
- initialized, by calling :func:`torch.distributed.init_process_group`.
- ``DistributedDataParallel`` is proven to be significantly faster than
- :class:`torch.nn.DataParallel` for single-node multi-GPU data
- parallel training.
- To use ``DistributedDataParallel`` on a host with N GPUs, you should spawn
- up ``N`` processes, ensuring that each process exclusively works on a single
- GPU from 0 to N-1. This can be done by either setting
- ``CUDA_VISIBLE_DEVICES`` for every process or by calling:
- >>> # xdoctest: +SKIP("undefined variables")
- >>> torch.cuda.set_device(i)
- where i is from 0 to N-1. In each process, you should refer the following
- to construct this module:
- >>> # xdoctest: +SKIP("undefined variables")
- >>> torch.distributed.init_process_group(
- >>> backend='nccl', world_size=N, init_method='...'
- >>> )
- >>> model = DistributedDataParallel(model, device_ids=[i], output_device=i)
- In order to spawn up multiple processes per node, you can use either
- ``torch.distributed.launch`` or ``torch.multiprocessing.spawn``.
- .. note::
- Please refer to `PyTorch Distributed Overview <https://pytorch.org/tutorials/beginner/dist_overview.html>`__
- for a brief introduction to all features related to distributed training.
- .. note::
- ``DistributedDataParallel`` can be used in conjunction with
- :class:`torch.distributed.optim.ZeroRedundancyOptimizer` to reduce
- per-rank optimizer states memory footprint. Please refer to
- `ZeroRedundancyOptimizer recipe <https://pytorch.org/tutorials/recipes/zero_redundancy_optimizer.html>`__
- for more details.
- .. note:: ``nccl`` backend is currently the fastest and highly recommended
- backend when using GPUs. This applies to both single-node and
- multi-node distributed training.
- .. note:: This module also supports mixed-precision distributed training.
- This means that your model can have different types of parameters such
- as mixed types of ``fp16`` and ``fp32``, the gradient reduction on these
- mixed types of parameters will just work fine.
- .. note:: If you use ``torch.save`` on one process to checkpoint the module,
- and ``torch.load`` on some other processes to recover it, make sure that
- ``map_location`` is configured properly for every process. Without
- ``map_location``, ``torch.load`` would recover the module to devices
- where the module was saved from.
- .. note:: When a model is trained on ``M`` nodes with ``batch=N``, the
- gradient will be ``M`` times smaller when compared to the same model
- trained on a single node with ``batch=M*N`` if the loss is summed (NOT
- averaged as usual) across instances in a batch (because the gradients
- between different nodes are averaged). You should take this into
- consideration when you want to obtain a mathematically equivalent
- training process compared to the local training counterpart. But in most
- cases, you can just treat a DistributedDataParallel wrapped model, a
- DataParallel wrapped model and an ordinary model on a single GPU as the
- same (E.g. using the same learning rate for equivalent batch size).
- .. note::
- Parameters are never broadcast between processes. The module performs
- an all-reduce step on gradients and assumes that they will be modified
- by the optimizer in all processes in the same way. Buffers
- (e.g. BatchNorm stats) are broadcast from the module in process of rank
- 0, to all other replicas in the system in every iteration.
- .. note::
- If you are using DistributedDataParallel in conjunction with the
- :ref:`distributed-rpc-framework`, you should always use
- :meth:`torch.distributed.autograd.backward` to compute gradients and
- :class:`torch.distributed.optim.DistributedOptimizer` for optimizing
- parameters.
- Example::
- >>> # xdoctest: +SKIP("undefined variables")
- >>> import torch.distributed.autograd as dist_autograd
- >>> from torch.nn.parallel import DistributedDataParallel as DDP
- >>> import torch
- >>> from torch import optim
- >>> from torch.distributed.optim import DistributedOptimizer
- >>> import torch.distributed.rpc as rpc
- >>> from torch.distributed.rpc import RRef
- >>>
- >>> t1 = torch.rand((3, 3), requires_grad=True)
- >>> t2 = torch.rand((3, 3), requires_grad=True)
- >>> rref = rpc.remote("worker1", torch.add, args=(t1, t2))
- >>> ddp_model = DDP(my_model)
- >>>
- >>> # Setup optimizer
- >>> optimizer_params = [rref]
- >>> for param in ddp_model.parameters():
- >>> optimizer_params.append(RRef(param))
- >>>
- >>> dist_optim = DistributedOptimizer(
- >>> optim.SGD,
- >>> optimizer_params,
- >>> lr=0.05,
- >>> )
- >>>
- >>> with dist_autograd.context() as context_id:
- >>> pred = ddp_model(rref.to_here())
- >>> loss = loss_func(pred, target)
- >>> dist_autograd.backward(context_id, [loss])
- >>> dist_optim.step(context_id)
- .. note::
- DistributedDataParallel currently offers limited support for gradient
- checkpointing with :meth:`torch.utils.checkpoint`. DDP will work as
- expected when there are no unused parameters in the model and each layer
- is checkpointed at most once (make sure you are not passing
- `find_unused_parameters=True` to DDP). We currently do not support the
- case where a layer is checkpointed multiple times, or when there unused
- parameters in the checkpointed model.
- .. note::
- To let a non-DDP model load a state dict from a DDP model,
- :meth:`~torch.nn.modules.utils.consume_prefix_in_state_dict_if_present`
- needs to be applied to strip the prefix "module." in the DDP state dict before loading.
- .. warning::
- Constructor, forward method, and differentiation of the output (or a
- function of the output of this module) are distributed synchronization
- points. Take that into account in case different processes might be
- executing different code.
- .. warning::
- This module assumes all parameters are registered in the model by the
- time it is created. No parameters should be added nor removed later.
- Same applies to buffers.
- .. warning::
- This module assumes all parameters are registered in the model of each
- distributed processes are in the same order. The module itself will
- conduct gradient ``allreduce`` following the reverse order of the
- registered parameters of the model. In other words, it is users'
- responsibility to ensure that each distributed process has the exact
- same model and thus the exact same parameter registration order.
- .. warning::
- This module allows parameters with non-rowmajor-contiguous strides.
- For example, your model may contain some parameters whose
- :class:`torch.memory_format` is ``torch.contiguous_format``
- and others whose format is ``torch.channels_last``. However,
- corresponding parameters in different processes must have the
- same strides.
- .. warning::
- This module doesn't work with :func:`torch.autograd.grad` (i.e. it will
- only work if gradients are to be accumulated in ``.grad`` attributes of
- parameters).
- .. warning::
- If you plan on using this module with a ``nccl`` backend or a ``gloo``
- backend (that uses Infiniband), together with a DataLoader that uses
- multiple workers, please change the multiprocessing start method to
- ``forkserver`` (Python 3 only) or ``spawn``. Unfortunately
- Gloo (that uses Infiniband) and NCCL2 are not fork safe, and you will
- likely experience deadlocks if you don't change this setting.
- .. warning::
- You should never try to change your model's parameters after wrapping
- up your model with ``DistributedDataParallel``. Because, when
- wrapping up your model with ``DistributedDataParallel``, the constructor
- of ``DistributedDataParallel`` will register the additional gradient
- reduction functions on all the parameters of the model itself at the
- time of construction. If you change the model's parameters afterwards,
- gradient reduction functions no longer match the correct set of
- parameters.
- .. warning::
- Using ``DistributedDataParallel`` in conjunction with the
- :ref:`distributed-rpc-framework` is experimental and subject to change.
- Args:
- module (Module): module to be parallelized
- device_ids (list of int or torch.device): CUDA devices.
- 1) For single-device modules, ``device_ids`` can
- contain exactly one device id, which represents the only
- CUDA device where the input module corresponding to this process resides.
- Alternatively, ``device_ids`` can also be ``None``.
- 2) For multi-device modules and CPU modules,
- ``device_ids`` must be ``None``.
- When ``device_ids`` is ``None`` for both cases,
- both the input data for the forward pass and the actual module
- must be placed on the correct device.
- (default: ``None``)
- output_device (int or torch.device): Device location of output for
- single-device CUDA modules. For multi-device modules and
- CPU modules, it must be ``None``, and the module itself
- dictates the output location. (default: ``device_ids[0]``
- for single-device modules)
- broadcast_buffers (bool): Flag that enables syncing (broadcasting)
- buffers of the module at beginning of the ``forward``
- function. (default: ``True``)
- process_group: The process group to be used for distributed data
- all-reduction. If ``None``, the default process group, which
- is created by :func:`torch.distributed.init_process_group`,
- will be used. (default: ``None``)
- bucket_cap_mb: ``DistributedDataParallel`` will bucket parameters into
- multiple buckets so that gradient reduction of each
- bucket can potentially overlap with backward computation.
- :attr:`bucket_cap_mb` controls the bucket size in
- MegaBytes (MB). (default: 25)
- find_unused_parameters (bool): Traverse the autograd graph from all
- tensors contained in the return value of the
- wrapped module's ``forward`` function. Parameters
- that don't receive gradients as part of this
- graph are preemptively marked as being ready to
- be reduced. In addition, parameters that may have
- been used in the wrapped module's ``forward``
- function but were not part of loss computation and
- thus would also not receive gradients are
- preemptively marked as ready to be reduced.
- (default: ``False``)
- check_reduction: This argument is deprecated.
- gradient_as_bucket_view (bool): When set to ``True``, gradients will be views
- pointing to different offsets of ``allreduce`` communication
- buckets. This can reduce peak memory usage, where the
- saved memory size will be equal to the total gradients
- size. Moreover, it avoids the overhead of copying between
- gradients and ``allreduce`` communication buckets. When
- gradients are views, ``detach_()`` cannot be called on the
- gradients. If hitting such errors, please fix it by
- referring to the :meth:`~torch.optim.Optimizer.zero_grad`
- function in ``torch/optim/optimizer.py`` as a solution.
- Note that gradients will be views after first iteration, so
- the peak memory saving should be checked after first iteration.
- static_graph (bool): When set to ``True``, DDP knows the trained graph is
- static. Static graph means 1) The set of used and unused
- parameters will not change during the whole training loop; in
- this case, it does not matter whether users set
- ``find_unused_parameters = True`` or not. 2) How the graph is trained
- will not change during the whole training loop (meaning there is
- no control flow depending on iterations).
- When static_graph is set to be ``True``, DDP will support cases that
- can not be supported in the past:
- 1) Reentrant backwards.
- 2) Activation checkpointing multiple times.
- 3) Activation checkpointing when model has unused parameters.
- 4) There are model parameters that are outside of forward function.
- 5) Potentially improve performance when there are unused parameters,
- as DDP will not search graph in each iteration to detect unused
- parameters when static_graph is set to be ``True``.
- To check whether you can set static_graph to be ``True``, one way is to
- check ddp logging data at the end of your previous model training,
- if ``ddp_logging_data.get("can_set_static_graph") == True``, mostly you
- can set ``static_graph = True`` as well.
- Example::
- >>> # xdoctest: +SKIP("undefined variables")
- >>> model_DDP = torch.nn.parallel.DistributedDataParallel(model)
- >>> # Training loop
- >>> ...
- >>> ddp_logging_data = model_DDP._get_ddp_logging_data()
- >>> static_graph = ddp_logging_data.get("can_set_static_graph")
- Attributes:
- module (Module): the module to be parallelized.
- Example::
- >>> # xdoctest: +SKIP("undefined variables")
- >>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...')
- >>> net = torch.nn.parallel.DistributedDataParallel(model)
- """
- # used to track whether the given thread is inside ddp forward for torchdynamo purposes
- _active_ddp_module = None
- def __init__(
- self,
- module,
- device_ids=None,
- output_device=None,
- dim=0,
- broadcast_buffers=True,
- process_group=None,
- bucket_cap_mb=25,
- find_unused_parameters=False,
- check_reduction=False,
- gradient_as_bucket_view=False,
- static_graph=False,
- ):
- super().__init__()
- Joinable.__init__(self)
- self.logger = None
- if hasattr(module, "_ddp_params_and_buffers_to_ignore"):
- self.parameters_to_ignore = set(module._ddp_params_and_buffers_to_ignore)
- else:
- self.parameters_to_ignore = set()
- self._module_parameters = [p for n, p in module.named_parameters() if n not in self.parameters_to_ignore]
- if not any((p.requires_grad for p in self._module_parameters)):
- self._log_and_throw(
- RuntimeError,
- "DistributedDataParallel is not needed when a module "
- "doesn't have any parameter that requires a gradient.",
- )
- if device_ids is not None and len(device_ids) > 1:
- self._log_and_throw(
- ValueError,
- "device_ids can only be None or contain a single element.",
- )
- self.is_multi_device_module = len({p.device for p in self._module_parameters}) > 1
- distinct_device_types = {p.device.type for p in self._module_parameters if p.device is not None}
- if len(distinct_device_types) != 1:
- self._log_and_throw(
- ValueError,
- "DistributedDataParallel's input module must be on "
- "the same type of devices, but input module parameters locate in {}.".format(
- distinct_device_types
- ),
- )
- self.device_type = list(distinct_device_types)[0]
- if (
- device_ids is None
- or len(device_ids) == 0 # For backward compatibility.
- or self.device_type == "cpu"
- or self.is_multi_device_module
- ):
- if device_ids or output_device:
- self._log_and_throw(
- ValueError,
- "DistributedDataParallel device_ids and output_device arguments "
- "only work with single-device/multiple-device GPU modules or CPU modules, "
- "but got device_ids {}, output_device {}, and module parameters {}.".format(
- device_ids,
- output_device,
- {p.device for p in self._module_parameters},
- ),
- )
- self.device_ids = None
- self.output_device = None
- else:
- self.device_ids = [_get_device_index(x, True) for x in device_ids]
- if output_device is None:
- output_device = device_ids[0]
- self.output_device = _get_device_index(output_device, True)
- if process_group is None:
- self.process_group = _get_default_group()
- else:
- self.process_group = process_group
- self.static_graph = False
- self.dim = dim
- self.module = module
- self.device = list(self._module_parameters)[0].device
- self.broadcast_buffers = broadcast_buffers
- self.find_unused_parameters = find_unused_parameters
- self.require_backward_grad_sync = True
- self.require_forward_param_sync = True
- self.gradient_as_bucket_view = gradient_as_bucket_view
- self._use_replicated_tensor_module = (
- _ddp_with_replicated_tensor_enabled()
- )
- self._build_replicated_tensor_module()
- if check_reduction:
- # This argument is no longer used since the reducer
- # will ensure reduction completes even if some parameters
- # do not receive gradients.
- warnings.warn(
- "The `check_reduction` argument in `DistributedDataParallel` "
- "module is deprecated. Please avoid using it."
- )
- # Check that a module does not have Uninitialized parameters
- for param in self._module_parameters:
- if isinstance(param, torch.nn.parameter.UninitializedParameter):
- self._log_and_throw(
- RuntimeError,
- "Modules with uninitialized parameters can't be used with `DistributedDataParallel`. "
- "Run a dummy forward pass to correctly initialize the modules",
- )
- # used for intra-node param sync and inter-node sync as well
- self.broadcast_bucket_size = int(250 * 1024 * 1024)
- # reduction bucket size
- self.bucket_bytes_cap = int(bucket_cap_mb * 1024 * 1024)
- # Whether to perform input tensor CPU to GPU copies on a side-stream
- self.use_side_stream_for_tensor_copies = (
- os.environ.get("PYTORCH_DDP_USE_SIDE_STREAM", "1") == "1"
- )
- # Build parameters for reducer.
- parameters, expect_sparse_gradient = self._build_params_for_reducer()
- # Verify model equivalence.
- _verify_param_shape_across_processes(self.process_group, parameters)
- # Sync params and buffers. Ensures all DDP models start off at the same value.
- _sync_module_states(
- module=self.module,
- process_group=self.process_group,
- broadcast_bucket_size=self.broadcast_bucket_size,
- src=0,
- params_and_buffers_to_ignore=self.parameters_to_ignore,
- )
- # In debug mode, build a mapping of parameter index -> parameter.
- param_to_name_mapping = self._build_debug_param_to_name_mapping(
- parameters
- )
- # Builds reducer.
- self._ddp_init_helper(
- parameters,
- expect_sparse_gradient,
- param_to_name_mapping,
- static_graph,
- )
- self._has_rebuilt_buckets = False
- if static_graph:
- self._set_static_graph()
- self._setup_in_backward_optimizers()
- def _setup_in_backward_optimizers(self):
- # Check if user has used apply_optim_in_backward to overlap optimizer
- # step + DDP backward. Current constraints:
- # 1. Only allreduce is supported at the moment, no custom communication.
- # 2. The reducer by default sets all grads for parameters DDP manages to
- # None after they have been applied by the optimizer. There is no support
- # for setting only some parameter grads to None, this must be done manually
- # by user (and DDP_OVERLAPPED_OPTIM_SET_GRADS_TO_NONE=0 needs to be set.)
- # If your use case requires some DDP managed parameters to run with
- # an in-backward optimizer and some with a traditional optimizer, please
- # ping https://github.com/pytorch/pytorch/issues/90052.
- # NOTE: we use self._module_parameters instead of .parameters() since
- # the former excludes ignored (non-DDP managed) parameters.
- if any(
- hasattr(p, '_in_backward_optimizers') for p in self._module_parameters
- ):
- # Remove hooks that apply_optim_in_backward had registered because
- # DDP customizes how optimizer is overlapped with backward due to
- # the allreduce.
- param_to_handle_map = dist.optim.apply_optimizer_in_backward.param_to_optim_hook_handle_map
- for p in self._module_parameters:
- for handle in param_to_handle_map.get(p, []):
- handle.remove()
- # Need a weakref to the reducer in order to run all_reduce.
- reducer_weakref = weakref.ref(self.reducer)
- # Note: importing in function, otherwise this will cause a circular
- # import.
- from torch.distributed.algorithms.ddp_comm_hooks.optimizer_overlap_hooks import (
- _apply_optim_in_backward_hook
- )
- self.register_comm_hook(
- (reducer_weakref, self.process_group),
- _apply_optim_in_backward_hook(
- gradient_is_bucket_view=self.gradient_as_bucket_view
- ),
- )
- # TODO (rohan-varma): this is a workaround that allows users to
- # disable the default behavior of DDP managed parameters with
- # optimizer runing in backwards having their gradients all set to None.
- # Currently, it is an "all or nothing behavior" where DDP will set
- # no grads to None or all of them, relaxing this behavior will be
- # done dependent on use cases.
- if os.getenv("DDP_OVERLAPPED_OPTIM_SET_GRADS_TO_NONE", "1") != "0":
- warnings.warn(
- "DDP + apply_optim_in_backward will currently set all "
- "parameter gradients to None. If this is not the desired "
- "behavior, please set env variable "
- "DDP_OVERLAPPED_OPTIM_SET_GRADS_TO_NONE=0, and manually set"
- "gradients to None/zero as desired."
- )
- self.reducer._set_grads_to_none() # type: ignore[attr-defined]
- def _build_replicated_tensor_module(self):
- if self._use_replicated_tensor_module:
- # Create a module with ReplicatedTensor without copying tensors. Avoid
- # registering '_replicated_tensor_module' as a submodule by directly
- # adding to self.__dict__.
- from ._replicated_tensor_ddp_interop import _replicate_module
- self.__dict__["_replicated_tensor_module"] = _replicate_module(
- self.module, self.process_group
- )
- def _log_and_throw(self, err_type, err_msg):
- if self.logger is not None:
- self.logger.set_error_and_log(f"{str(err_type)}: {err_msg}")
- raise err_type(err_msg)
- def _ddp_init_helper(
- self,
- parameters,
- expect_sparse_gradient,
- param_to_name_mapping,
- static_graph,
- ):
- """
- Initialization helper function that does the following:
- (1) bucketing the parameters for reductions
- (2) resetting the bucketing states
- (3) registering the grad hooks
- (4) Logging construction-time DDP logging data
- (5) passing a handle of DDP to SyncBatchNorm Layer
- """
- self.num_iterations = 0
- # Notice, the parameters order is not in the order in which they are used,
- # especially in models with control flow.
- #
- # Alongside parameters are not presented in the real execution order,
- # if a certain model happens to also
- # 1) have other collectives comm ops in its backward graph.
- # 2) have unused parameter in subset ranks of the whole world.
- # bucketing could insert ALL-REDUCE comm op too early on the rank with unused parameter,
- # matching up with other collectives comm ops on other ranks unexpectedly.
- #
- # In order to handle this corner case, when the parameters are not in the real execution order,
- # we don't do bucketing, thus only one ALL-REDUCE is inserted after all the gradients
- # of the whole graph are computed.
- #
- # Notice, here we only disable bucketing for the first iteration.
- # After the first iteration, it's OK to rebuild buckets,
- # because "bucket rebuild" bucketizes parameters based on its real execution order in backward graph.
- # Can remove this branching once #73732 is landed.
- if static_graph is True or self.find_unused_parameters is False:
- bucket_size_limits = [sys.maxsize]
- else:
- bucket_size_limits = [
- dist._DEFAULT_FIRST_BUCKET_BYTES,
- self.bucket_bytes_cap,
- ]
- (
- bucket_indices,
- per_bucket_size_limits,
- ) = dist._compute_bucket_assignment_by_size(
- parameters,
- bucket_size_limits,
- expect_sparse_gradient,
- )
- # Note: reverse list of buckets because we want to approximate the
- # order in which their gradients are produced, and assume they
- # are used in the forward pass in the order they are defined.
- self.reducer = dist.Reducer(
- parameters,
- list(reversed(bucket_indices)),
- list(reversed(per_bucket_size_limits)),
- self.process_group,
- expect_sparse_gradient,
- # The bucket size limit is specified in the constructor.
- # Additionally, we allow for a single small bucket for parameters
- # that are defined first, such that their gradients don't spill into
- # a much larger bucket, adding unnecessary latency after gradient
- # computation finishes. Experiments showed 1MB is a reasonable value.
- self.bucket_bytes_cap,
- self.find_unused_parameters,
- self.gradient_as_bucket_view,
- param_to_name_mapping,
- # User can set dist._DEFAULT_FIRST_BUCKET_BYTES to tune DDP first
- # bucket.
- dist._DEFAULT_FIRST_BUCKET_BYTES,
- )
- self.logger = dist.Logger(self.reducer)
- # Set as a weak reference to avoid reference cycle between
- # logger and reducer.
- self.reducer.set_logger(self.logger)
- has_sync_bn = False
- for submodule in self.module.modules():
- if isinstance(submodule, torch.nn.SyncBatchNorm):
- has_sync_bn = True
- break
- # Set logging data that can be got during construction time.
- self.logger.set_construction_data_and_log(
- self.module.__class__.__name__,
- [] if self.device_ids is None else self.device_ids,
- -1 if self.output_device is None else self.output_device,
- self.broadcast_buffers,
- has_sync_bn,
- static_graph,
- )
- # passing a handle to torch.nn.SyncBatchNorm layer
- self._passing_sync_batchnorm_handle(self.module)
- def __getstate__(self):
- self._check_default_group()
- attrs = copy.copy(self.__dict__)
- del attrs["process_group"]
- del attrs["reducer"]
- del attrs["logger"]
- if self._use_replicated_tensor_module:
- del attrs["_replicated_tensor_module"]
- return attrs
- def __setstate__(self, state):
- # If serializable, then the process group should be the default one
- self.process_group = _get_default_group()
- super().__setstate__(state)
- self._build_replicated_tensor_module()
- self.__dict__.setdefault("require_forward_param_sync", True)
- self.__dict__.setdefault("require_backward_grad_sync", True)
- parameters, expect_sparse_gradient = self._build_params_for_reducer()
- # In debug mode, build a mapping of parameter index -> parameter.
- param_to_name_mapping = self._build_debug_param_to_name_mapping(
- parameters
- )
- # Builds reducer.
- self._ddp_init_helper(
- parameters,
- expect_sparse_gradient,
- param_to_name_mapping,
- self.static_graph,
- )
- if self.static_graph:
- self.reducer._set_static_graph()
- assert self.logger is not None
- self.logger._set_static_graph()
- def _build_params_for_reducer(self):
- # Build tuple of (module, parameter) for all parameters that require grads.
- modules_and_parameters = [
- (module, parameter)
- for module_name, module in self.module.named_modules()
- for parameter in [
- param
- # Note that we access module.named_parameters instead of
- # parameters(module). parameters(module) is only needed in the
- # single-process multi device case, where it accesses replicated
- # parameters through _former_parameters.
- for param_name, param in module.named_parameters(recurse=False)
- if param.requires_grad
- and f"{module_name}.{param_name}"
- not in self.parameters_to_ignore
- ]
- ]
- # Deduplicate any parameters that might be shared across child modules.
- memo = set()
- modules_and_parameters = [
- # "p not in memo" is the deduplication check.
- # "not memo.add(p)" is always True, and it's only there to cause "add(p)" if needed.
- (m, p)
- for m, p in modules_and_parameters
- if p not in memo and not memo.add(p) # type: ignore[func-returns-value]
- ]
- # Build list of parameters.
- parameters = [parameter for _, parameter in modules_and_parameters]
- # Checks if a module will produce a sparse gradient.
- def produces_sparse_gradient(module):
- if isinstance(module, (torch.nn.Embedding, torch.nn.EmbeddingBag)):
- return module.sparse
- return False
- # Build list of booleans indicating whether or not to expect sparse
- # gradients for the corresponding parameters.
- expect_sparse_gradient = [
- produces_sparse_gradient(module)
- for module, _ in modules_and_parameters
- ]
- self._assign_modules_buffers()
- return parameters, expect_sparse_gradient
- def _assign_modules_buffers(self):
- """
- Assigns module buffers to self.modules_buffers which are then used to
- broadcast across ranks when broadcast_buffers=True. Note that this
- must be called every time buffers need to be synced because buffers can
- be reassigned by user module,
- see https://github.com/pytorch/pytorch/issues/63916.
- """
- # Collect buffers for modules, filtering out buffers that should be ignored.
- named_module_buffers = [
- (buffer, buffer_name)
- for buffer_name, buffer in self.module.named_buffers()
- if buffer_name not in self.parameters_to_ignore
- ]
- self.modules_buffers = [
- buffer for (buffer, buffer_name) in named_module_buffers
- ]
- # Dict[str, tensor] representing module buffers not ignored by DDP.
- self.named_module_buffers = {
- buffer_name: buffer
- for (buffer, buffer_name) in named_module_buffers
- }
- def _build_debug_param_to_name_mapping(self, parameters):
- if dist.get_debug_level() == dist.DebugLevel.OFF:
- return {}
- param_to_param_index = {
- parameters[i]: i for i in range(len(parameters))
- }
- param_set = set(parameters)
- param_index_to_param_fqn = {}
- for module_name, module in self.module.named_modules():
- for param_name, param in module.named_parameters(recurse=False):
- fqn = f"{module_name}.{param_name}"
- # Bypass ignored parameters since those are not reduced by DDP
- # to begin with.
- if fqn not in self.parameters_to_ignore and param.requires_grad:
- if param not in param_set:
- self._log_and_throw(
- ValueError,
- f"Param with name {fqn} found in module parameters, but not DDP parameters."
- " This indicates a bug in DDP, please report an issue to PyTorch.",
- )
- param_index = param_to_param_index[param]
- param_index_to_param_fqn[param_index] = fqn
- # Ensure we covered all parameters
- if len(param_set) != len(param_index_to_param_fqn):
- self._log_and_throw(
- ValueError,
- (
- "Expected param to name mapping to cover all parameters, but"
- f" got conflicting lengths: {len(param_set)} vs "
- f"{len(param_index_to_param_fqn)}. This indicates a bug in DDP"
- ", please report an issue to PyTorch."
- ),
- )
- return param_index_to_param_fqn
- def _get_parameters(self, m, recurse=True):
- """
- Returns a generator of module parameters
- """
- def model_parameters(m):
- ps = (
- m._former_parameters.values()
- if hasattr(m, "_former_parameters")
- else m.parameters(recurse=False)
- )
- yield from ps
- for m in m.modules() if recurse else [m]:
- for p in model_parameters(m):
- yield p
- def _check_default_group(self):
- pickle_not_supported = False
- try:
- if self.process_group != _get_default_group():
- pickle_not_supported = True
- except RuntimeError:
- pickle_not_supported = True
- if pickle_not_supported:
- self._log_and_throw(
- RuntimeError,
- "DDP Pickling/Unpickling are only supported "
- "when using DDP with the default process "
- "group. That is, when you have called "
- "init_process_group and have not passed "
- "process_group argument to DDP constructor",
- )
- @contextmanager
- def no_sync(self):
- r"""
- A context manager to disable gradient synchronizations across DDP
- processes. Within this context, gradients will be accumulated on module
- variables, which will later be synchronized in the first
- forward-backward pass exiting the context.
- Example::
- >>> # xdoctest: +SKIP("undefined variables")
- >>> ddp = torch.nn.parallel.DistributedDataParallel(model, pg)
- >>> with ddp.no_sync():
- >>> for input in inputs:
- >>> ddp(input).backward() # no synchronization, accumulate grads
- >>> ddp(another_input).backward() # synchronize grads
- .. warning::
- The forward pass should be included inside the context manager, or
- else gradients will still be synchronized.
- """
- old_require_backward_grad_sync = self.require_backward_grad_sync
- self.require_backward_grad_sync = False
- try:
- yield
- finally:
- self.require_backward_grad_sync = old_require_backward_grad_sync
- @classmethod
- def _get_active_ddp_module(cls):
- """
- TorchDynamo needs to know whether DDP is currently active, and access the DDP module in order to cooperatively optimize it.
- """
- return cls._active_ddp_module
- # note, this ctxmgr function is marked 'skip' in torchdynamo, so dynamo only kicks in
- # for the 'module_to_run' underneath
- # see torch._dynamo/eval_frame.py TorchPatcher.patch for more details
- @contextmanager
- def _inside_ddp_forward(self):
- DistributedDataParallel._active_ddp_module = self
- try:
- yield
- except Exception:
- raise
- finally:
- DistributedDataParallel._active_ddp_module = None
- def _run_ddp_forward(self, *inputs, **kwargs):
- module_to_run = (
- self._replicated_tensor_module
- if self._use_replicated_tensor_module
- else self.module
- )
- if self.device_ids:
- inputs, kwargs = _to_kwargs(
- inputs,
- kwargs,
- self.device_ids[0],
- self.use_side_stream_for_tensor_copies,
- )
- with self._inside_ddp_forward():
- return module_to_run(*inputs[0], **kwargs[0]) # type: ignore[index]
- else:
- with self._inside_ddp_forward():
- return module_to_run(*inputs, **kwargs)
- def forward(self, *inputs, **kwargs):
- with torch.autograd.profiler.record_function(
- "DistributedDataParallel.forward"
- ):
- if torch.is_grad_enabled() and self.require_backward_grad_sync:
- assert self.logger is not None
- self.logger.set_runtime_stats_and_log()
- self.num_iterations += 1
- self.reducer.prepare_for_forward()
- # Notify the join context that this process has not joined, if
- # needed
- work = Join.notify_join_context(self)
- if work:
- self.reducer._set_forward_pass_work_handle(
- work, self._divide_by_initial_world_size # type: ignore[arg-type]
- )
- # Calling _rebuild_buckets before forward compuation,
- # It may allocate new buckets before deallocating old buckets
- # inside _rebuild_buckets. To save peak memory usage,
- # call _rebuild_buckets before the peak memory usage increases
- # during forward computation.
- # This should be called only once during whole training period.
- if torch.is_grad_enabled() and self.reducer._rebuild_buckets():
- logger.info(
- "Reducer buckets have been rebuilt in this iteration."
- )
- self._has_rebuilt_buckets = True
- # sync params according to location (before/after forward) user
- # specified as part of hook, if hook was specified.
- if self._check_sync_bufs_pre_fwd():
- self._sync_buffers()
- if self._join_config.enable:
- # Notify joined ranks whether they should sync in backwards pass or not.
- self._check_global_requires_backward_grad_sync(
- is_joined_rank=False
- )
- output = self._run_ddp_forward(*inputs, **kwargs)
- # sync params according to location (before/after forward) user
- # specified as part of hook, if hook was specified.
- if self._check_sync_bufs_post_fwd():
- self._sync_buffers()
- if torch.is_grad_enabled() and self.require_backward_grad_sync:
- self.require_forward_param_sync = True
- # We'll return the output object verbatim since it is a freeform
- # object. We need to find any tensors in this object, though,
- # because we need to figure out which parameters were used during
- # this forward pass, to ensure we short circuit reduction for any
- # unused parameters. Only if `find_unused_parameters` is set.
- if self.find_unused_parameters and not self.static_graph:
- # Do not need to populate this for static graph.
- self.reducer.prepare_for_backward(
- list(_find_tensors(output))
- )
- else:
- self.reducer.prepare_for_backward([])
- else:
- self.require_forward_param_sync = False
- # TODO: DDPSink is currently enabled for unused parameter detection and
- # static graph training for first iteration.
- if (self.find_unused_parameters and not self.static_graph) or (
- self.static_graph and self.num_iterations == 1
- ):
- state_dict = {
- "static_graph": self.static_graph,
- "num_iterations": self.num_iterations,
- }
- (
- output_tensor_list,
- treespec,
- output_is_rref,
- ) = _tree_flatten_with_rref(output)
- output_placeholders = [None for _ in range(len(output_tensor_list))]
- # Do not touch tensors that have no grad_fn, which can cause issues
- # such as https://github.com/pytorch/pytorch/issues/60733
- for i, output in enumerate(output_tensor_list):
- if torch.is_tensor(output) and output.grad_fn is None:
- output_placeholders[i] = output
- # When find_unused_parameters=True, makes tensors which require grad
- # run through the DDPSink backward pass. When not all outputs are
- # used in loss, this makes those corresponding tensors receive
- # undefined gradient which the reducer then handles to ensure
- # param.grad field is not touched and we don't error out.
- passthrough_tensor_list = _DDPSink.apply(
- self.reducer,
- state_dict,
- *output_tensor_list,
- )
- for i in range(len(output_placeholders)):
- if output_placeholders[i] is None:
- output_placeholders[i] = passthrough_tensor_list[i]
- # Reconstruct output data structure.
- output = _tree_unflatten_with_rref(
- output_placeholders, treespec, output_is_rref
- )
- return output
- def scatter(self, inputs, kwargs, device_ids):
- return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
- def to_kwargs(self, inputs, kwargs, device_id):
- # Kept for BC
- return _to_kwargs(
- inputs, kwargs, device_id, self.use_side_stream_for_tensor_copies
- )
- def gather(self, outputs, output_device):
- return gather(outputs, output_device, dim=self.dim)
- def train(self, mode=True):
- super().train(mode)
- if self._use_replicated_tensor_module:
- self._replicated_tensor_module.train(mode) # type: ignore[union-attr]
- return self
- # When running in join mode, schedules an allreduce to notify joined ranks
- # of whether backwards pass synchronization will run this iteration or not.
- def _check_global_requires_backward_grad_sync(self, is_joined_rank):
- if not is_joined_rank and self.require_backward_grad_sync:
- requires_sync_tensor = torch.ones(1, device=self.device)
- else:
- requires_sync_tensor = torch.zeros(1, device=self.device)
- work = dist.all_reduce(
- requires_sync_tensor, group=self.process_group, async_op=True
- )
- return work
- # When running in join mode, checks and performs sync of module buffers if
- # the models have buffers that should be synchronized in the forward pass.
- def _check_and_sync_module_buffers(self):
- if self._check_sync_bufs_pre_fwd():
- authoritative_rank = self._find_common_rank(
- self._distributed_rank, False
- )
- self._sync_module_buffers(authoritative_rank)
- # When running in join model, agrees upon a common rank and broadcast model
- # parameters to all other ranks.
- def _sync_final_model(self, is_last_joiner):
- # Agree upon the process that will be the authoritative model copy.
- # The current rank is a candidate for being the authoritative copy if
- # is_last_joiner=True. We break ties via picking the larger rank.
- self._authoritative_rank = self._find_common_rank(
- self._distributed_rank, is_last_joiner
- )
- _sync_module_states(
- module=self.module,
- process_group=self.process_group,
- broadcast_bucket_size=self.broadcast_bucket_size,
- src=self._authoritative_rank,
- params_and_buffers_to_ignore=self.parameters_to_ignore,
- )
- # Schedule comm ops to match those scheduled in the reducer's backward
- # pass.
- def _match_all_reduce_for_bwd_pass(self):
- comm_work = []
- # Schedule comm in the same order as Reducer schedules them, i.e.
- # the order of the buckets. Retrieving the bucket order from the reducer
- # ensures that we keep the same order in join mode, such as when bucket
- # order is rebuilt dynamically.
- # Returns grad_buckets in order, but real tensors are substituted with
- # zero tensors of the same shape.
- grad_buckets = self.reducer._get_zeros_like_grad_buckets()
- for grad_bucket in grad_buckets:
- # Joined processes contribute zero gradient. In the case that
- # divide_by_initial_world_size=True, we divide grads by the static
- # world size, if not, the dividing factor is reduced by the number
- # of joined processes.
- work = self.reducer._run_comm_hook(grad_bucket)
- comm_work.append(work)
- for work in comm_work:
- work.wait()
- # Allreduces the used parameter mapping across ranks.
- def _match_unused_params_allreduce(self):
- locally_used_param_map = self.reducer._get_local_used_map()
- self.process_group.allreduce(locally_used_param_map)
- def join(
- self,
- divide_by_initial_world_size: bool = True,
- enable: bool = True,
- throw_on_early_termination: bool = False,
- ):
- r"""
- A context manager to be used in conjunction with an instance of
- :class:`torch.nn.parallel.DistributedDataParallel` to be
- able to train with uneven inputs across participating processes.
- This context manager will keep track of already-joined DDP processes,
- and "shadow" the forward and backward passes by inserting collective
- communication operations to match with the ones created by non-joined
- DDP processes. This will ensure each collective call has a corresponding
- call by already-joined DDP processes, preventing hangs or errors that
- would otherwise happen when training with uneven inputs across
- processes. Alternatively, if the flag ``throw_on_early_termination`` is
- specified to be ``True``, all trainers will throw an error once one rank
- runs out of inputs, allowing these errors to be caught and handled
- according to application logic.
- Once all DDP processes have joined, the context manager will broadcast
- the model corresponding to the last joined process to all processes to
- ensure the model is the same across all processes
- (which is guaranteed by DDP).
- To use this to enable training with uneven inputs across processes,
- simply wrap this context manager around your training loop. No further
- modifications to the model or data loading is required.
- .. warning::
- If the model or training loop this context manager is wrapped around
- has additional distributed collective operations, such as
- ``SyncBatchNorm`` in the model's forward pass, then the flag
- ``throw_on_early_termination`` must be enabled. This is because this
- context manager is not aware of non-DDP collective communication.
- This flag will cause all ranks to throw when any one rank
- exhausts inputs, allowing these errors to be caught and recovered
- from across all ranks.
- Args:
- divide_by_initial_world_size (bool): If ``True``, will divide
- gradients by the initial ``world_size`` DDP training was launched
- with. If ``False``, will compute the effective world size
- (number of ranks that have not depleted their inputs yet) and
- divide gradients by that during allreduce. Set
- ``divide_by_initial_world_size=True`` to ensure every input
- sample including the uneven inputs have equal weight in terms of
- how much they contribute to the global gradient. This is
- achieved by always dividing the gradient by the initial
- ``world_size`` even when we encounter uneven inputs. If you set
- this to ``False``, we divide the gradient by the remaining
- number of nodes. This ensures parity with training on a smaller
- ``world_size`` although it also means the uneven inputs would
- contribute more towards the global gradient. Typically, you
- would want to set this to ``True`` for cases where the last few
- inputs of your training job are uneven. In extreme cases, where
- there is a large discrepancy in the number of inputs, setting
- this to ``False`` might provide better results.
- enable (bool): Whether to enable uneven input detection or not. Pass
- in ``enable=False`` to disable in cases where you know that
- inputs are even across participating processes. Default is
- ``True``.
- throw_on_early_termination (bool): Whether to throw an error
- or continue training when at least one rank has exhausted
- inputs. If ``True``, will throw upon the first rank reaching end
- of data. If ``False``, will continue training with a smaller
- effective world size until all ranks are joined. Note that if
- this flag is specified, then the flag
- ``divide_by_initial_world_size`` would be ignored. Default
- is ``False``.
- Example::
- >>> # xdoctest: +SKIP("Distributed")
- >>> import torch
- >>> import torch.distributed as dist
- >>> import os
- >>> import torch.multiprocessing as mp
- >>> import torch.nn as nn
- >>> # On each spawned worker
- >>> def worker(rank):
- >>> dist.init_process_group("nccl", rank=rank, world_size=2)
- >>> torch.cuda.set_device(rank)
- >>> model = nn.Linear(1, 1, bias=False).to(rank)
- >>> model = torch.nn.parallel.DistributedDataParallel(
- >>> model, device_ids=[rank], output_device=rank
- >>> )
- >>> # Rank 1 gets one more input than rank 0.
- >>> inputs = [torch.tensor([1]).float() for _ in range(10 + rank)]
- >>> with model.join():
- >>> for _ in range(5):
- >>> for inp in inputs:
- >>> loss = model(inp).sum()
- >>> loss.backward()
- >>> # Without the join() API, the below synchronization will hang
- >>> # blocking for rank 1's allreduce to complete.
- >>> torch.cuda.synchronize(device=rank)
- """
- return Join(
- [self],
- enable,
- throw_on_early_termination,
- divide_by_initial_world_size=divide_by_initial_world_size,
- )
- def join_hook(
- self,
- **kwargs,
- ):
- r"""
- Returns the DDP join hook, which enables training on uneven inputs by
- shadowing the collective communications in the forward and backward
- passes.
- Arguments:
- kwargs (dict): a :class:`dict` containing any keyword arguments
- to modify the behavior of the join hook at run time; all
- :class:`Joinable` instances sharing the same join context
- manager are forwarded the same value for ``kwargs``.
- The hook supports the following keyword arguments:
- divide_by_initial_world_size (bool, optional):
- If ``True``, then gradients are divided by the initial world
- size that DDP was launched with.
- If ``False``, then gradients are divided by the effective world
- size (i.e. the number of non-joined processes), meaning that
- the uneven inputs contribute more toward the global gradient.
- Typically, this should be set to ``True`` if the degree of
- unevenness is small but can be set to ``False`` in extreme
- cases for possibly better results.
- Default is ``True``.
- """
- divide_by_initial_world_size = kwargs.get(
- "divide_by_initial_world_size", True
- )
- return _DDPJoinHook(
- self, divide_by_initial_world_size=divide_by_initial_world_size
- )
- @property
- def join_device(self):
- return self.device
- @property
- def join_process_group(self):
- return self.process_group
- def _register_buffer_comm_hook(
- self,
- state,
- hook: Callable,
- comm_hook_location=_BufferCommHookLocation.POST_FORWARD,
- ):
- r"""
- Allows custom registration of hooks that define how buffer are
- synchronized across ranks. The hook takes in an optional state
- and is passed in a Dict[str, Tensor] corresponding to buffer names
- and the buffers, and can run arbitrary reductions on buffers as
- opposed to DDP's default broadcast from rank 0. This is useful for
- example if a counter needs to be summed or averaged across ranks
- every iteration.
- Args:
- state (Any): Optional state that is passed to the hook.
- hook (Callable): Callable with the following signature:
- ``hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]``
- comm_hook_location (_BufferCommHookLocation): Enum value indicating
- where to run the hook.
- _BufferCommHookLocation.PRE_FORWARD means that the
- hook will run _before_ the forward pass, and
- _BufferCommHookLocation.POST_FORWARD means that the
- hook will run _after_ the forward pass.
- NOTE: To maximize performance, users can return a
- List[torch.futures.Future] from their hook, and DDP will
- install and await these hooks appropriately at the end of
- the backward pass. This will ensure all buffers are
- synchronized by the end of the backward pass. If this
- setting is used, it is recommended to pass
- comm_hook_location=_BufferCommHookLocation.POST_FORWARD,
- which will trigger the hook after the forward pass.
- If _BufferCommHookLocation.PRE_FORWARD is used, users must
- ensure appropriate synchronization when manipulating GPU
- buffers in the forward pass.
- """
- assert callable(hook)
- self.buffer_hook = _BufferCommHook(
- buffer_comm_hook=hook,
- buffer_comm_hook_state=state,
- buffer_comm_hook_location=comm_hook_location,
- )
- def register_comm_hook(self, state: object, hook: Callable):
- r"""
- Registers a communication hook which is an enhancement that provides a
- flexible hook to users where they can specify how DDP aggregates gradients
- across multiple workers.
- This hook would be very useful for researchers to try out new ideas. For
- example, this hook can be used to implement several algorithms like GossipGrad
- and gradient compression which involve different communication strategies for
- parameter syncs while running Distributed DataParallel training.
- Args:
- state (object): Passed to the hook to maintain any state information during the training process.
- Examples include error feedback in gradient compression,
- peers to communicate with next in GossipGrad, etc.
- It is locally stored by each worker
- and shared by all the gradient tensors on the worker.
- hook (Callable): Callable with the following signature:
- ``hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]``:
- This function is called once the bucket is ready. The
- hook can perform whatever processing is needed and return
- a Future indicating completion of any async work (ex: allreduce).
- If the hook doesn't perform any communication, it still
- must return a completed Future. The Future should hold the
- new value of grad bucket's tensors. Once a bucket is ready,
- c10d reducer would call this hook and use the tensors returned
- by the Future and copy grads to individual parameters.
- Note that the future's return type must be a single tensor.
- We also provide an API called ``get_future`` to retrieve a
- Future associated with the completion of ``c10d.ProcessGroup.Work``.
- ``get_future`` is currently supported for NCCL and also supported for most
- operations on GLOO and MPI, except for peer to peer operations (send/recv).
- .. warning ::
- Grad bucket's tensors will not be predivided by world_size. User is responsible
- to divide by the world_size in case of operations like allreduce.
- .. warning ::
- DDP communication hook can only be registered once and should be registered
- before calling backward.
- .. warning ::
- The Future object that hook returns should contain a single tensor
- that has the same shape with the tensors inside grad bucket.
- .. warning ::
- ``get_future`` API supports NCCL, and partially GLOO and MPI backends (no support
- for peer-to-peer operations like send/recv) and will return a ``torch.futures.Future``.
- Example::
- Below is an example of a noop hook that returns the same tensor.
- >>> # xdoctest: +SKIP('undefined name')
- >>> def noop(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
- >>> fut = torch.futures.Future()
- >>> fut.set_result(bucket.buffer())
- >>> return fut
- >>> ddp.register_comm_hook(state=None, hook=noop)
- Example::
- Below is an example of a Parallel SGD algorithm where gradients are encoded before
- allreduce, and then decoded after allreduce.
- >>> # xdoctest: +SKIP('undefined name')
- >>> def encode_and_decode(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
- >>> encoded_tensor = encode(bucket.buffer()) # encode gradients
- >>> fut = torch.distributed.all_reduce(encoded_tensor).get_future()
- >>> # Define the then callback to decode.
- >>> def decode(fut):
- >>> decoded_tensor = decode(fut.value()[0]) # decode gradients
- >>> return decoded_tensor
- >>> return fut.then(decode)
- >>> ddp.register_comm_hook(state=None, hook=encode_and_decode)
- """
- self._check_comm_hook(hook)
- assert self.logger is not None
- self.logger._set_comm_hook_name(hook.__qualname__)
- dist._register_comm_hook(self.reducer, state, hook)
- def _register_builtin_comm_hook(self, comm_hook_type):
- r"""
- Registers a built-in communication hook that specifies how DDP
- aggregates gradients across multiple workers.
- The built-in hooks aim to provide efficient C++ implementations for certain hooks,
- which might not be as efficient if implemented in Python using a Python communication hook.
- Args:
- comm_hook_type (dist.BuiltinCommHookType): type of communication hook, such as ALLREDUCE, FP16_COMPRESS, etc.
- .. warning ::
- DDP communication hook can only be registered once and should be registered
- before calling backward.
- Example::
- Below is an example of a FP16 compression where gradients are
- compressed into 16-bit floating-point numbers before allreduce, and
- then decompressed after allreduce.
- >>> # xdoctest: +SKIP('undefined name')
- >>> ddp._register_builtin_comm_hook(dist.BuiltinCommHookType.FP16_COMPRESS)
- """
- assert self.logger is not None
- self.logger._set_comm_hook_name(str(comm_hook_type))
- dist._register_builtin_comm_hook(self.reducer, comm_hook_type)
- def _register_fused_optim(
- self, optim: Type, *args, optim_params=None, **kwargs
- ):
- r"""
- Registers an optimizer with DDP such that the optimization for a
- parameter will run immediately when that parameter's gradient is
- finished with reduction, instead of waiting for all parameters'
- gradients to finish reduction. This can result in a training speedup
- depending on your workload since the optimizer can run while gradient
- reduction for other parameters are still ongoing. In addition, this has
- the potential to reduce peak memory consumption during training, as it
- only needs to load the per-parameter optimizer states of a single
- parameter at a time, instead of loading all per-parameter optimizer
- states at once.
- Args:
- optim (Type): a ``torch.optim.Optimizer`` class to be registered
- as a fused optimizer.
- *args (Sequence[Any]): Arguments to forward to `optim`.
- optim_params (Optional[Iterable[torch.Tensor]]): Set of parameters
- to optimize, similar to `params` argument of traditional `torch.optim`
- Optimizers. If this is omitted, all DDP model parameters will be
- optimized.
- **kwargs: (Dict[str, Any]): Keyword arguments to forward to `optim`.
- .. warning ::
- _register_fused_optim should only be called once on a DDP instance,
- and registering multiple fused optimizers for the same DDP model
- is not currently supported. Please ping
- https://github.com/pytorch/pytorch/issues/71595 if this is necessary
- for your use case.
- .. warning ::
- _register_fused_optim and register_comm_hook currently do not
- compose together, meaning that custom DDP communication hooks are
- not supported with overlapped optimizers. Please ping
- https://github.com/pytorch/pytorch/issues/71595 if this is necessary
- for your use case.
- .. warning ::
- Gradient accumulation and DDP `no_sync` are currently not supported
- with overlapped optimizer. Please ping
- https://github.com/pytorch/pytorch/issues/71595 if this is necessary
- for your use case.
- Example::
- >>> # xdoctest: +SKIP("No rendezvous handler")
- >>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...')
- >>> net = torch.nn.parallel.DistributedDataParallel(model, pg)
- >>> lr = 1e-2
- >>> betas = (0.9, 0.99)
- >>> eps = 1e-6
- >>> net._register_fused_optim(torch.optim.Adam, lr, betas=betas, eps=eps)
- >>> # Example with subset of parameters
- >>> params_to_opt = [list(net.parameters())[0]]
- >>> net._register_fused_optim(
- ... torch.optim.Adam, lr, optim_params=params_to_opt, betas=betas, eps=eps
- ... )
- """
- # Note: importing in function, otherwise this will cause a circular
- # import as optimizer_overlap module needs to import DistributedDataParallel.
- from torch.distributed.algorithms._optimizer_overlap import (
- _as_overlapped_optim,
- )
- overlapped_optim = _as_overlapped_optim(
- optim, optim_params, *args, **kwargs
- )
- try:
- overlapped_optim.register_ddp(self)
- except NotImplementedError as e:
- raise RuntimeError(
- f"{optim} does not support overlapped DDP. Please file an issue to PyTorch or the respective owner of {optim}."
- ) from e
- def _distributed_broadcast_coalesced(
- self, tensors, buffer_size, authoritative_rank=0
- ):
- dist._broadcast_coalesced(
- self.process_group, tensors, buffer_size, authoritative_rank
- )
- def _check_sync_bufs_post_fwd(self):
- return (
- self.will_sync_module_buffers()
- and hasattr(self, "buffer_hook")
- and self.buffer_hook.buffer_comm_hook_location
- == _BufferCommHookLocation.POST_FORWARD
- )
- def _check_sync_bufs_pre_fwd(self):
- return self.will_sync_module_buffers() and (
- not hasattr(self, "buffer_hook")
- or self.buffer_hook.buffer_comm_hook_location
- == _BufferCommHookLocation.PRE_FORWARD
- )
- def will_sync_module_buffers(self):
- return (
- self.require_forward_param_sync
- and self.broadcast_buffers
- and len(self.modules_buffers) > 0
- )
- def _find_common_rank(self, input_rank, rank_cond):
- # -1 indicates that this rank is not under consideration to be the
- # common_rank
- rank_to_use = torch.tensor(
- [input_rank if rank_cond else -1],
- device=self.device,
- )
- dist.all_reduce(rank_to_use, op=ReduceOp.MAX, group=self.process_group)
- if rank_to_use.item() == -1:
- self._log_and_throw(
- ValueError,
- "BUG! Expected rank_cond to be true for at least one process."
- " This indicates a bug in PyTorch, please report an issue.",
- )
- return rank_to_use.item()
- def _sync_buffers(self):
- with torch.no_grad():
- # module buffer sync
- # Synchronize buffers across processes.
- # If we are running DDP with the join manager, we have to agree
- # upon a rank to sync module buffers from, since rank 0 may
- # already have been joined and have stale module buffers.
- if self._join_config.enable:
- authoritative_rank = self._find_common_rank(
- self._distributed_rank, True
- )
- else:
- # The process with rank 0 is considered the authoritative copy.
- authoritative_rank = 0
- # Update self.modules_buffers incase any buffers were
- # reassigned.
- self._assign_modules_buffers()
- self._sync_module_buffers(authoritative_rank)
- def _sync_module_buffers(self, authoritative_rank):
- if not hasattr(self, "buffer_hook"):
- self._default_broadcast_coalesced(
- authoritative_rank=authoritative_rank
- )
- else:
- hook = self.buffer_hook.buffer_comm_hook
- state = self.buffer_hook.buffer_comm_hook_state
- futs = hook(state, self.named_module_buffers)
- if futs is not None:
- self.reducer._install_post_backward_futures(futs)
- def _default_broadcast_coalesced(
- self, bufs=None, bucket_size=None, authoritative_rank=0
- ):
- """
- Broadcasts buffers from rank 0 to rest of workers. If bufs, bucket_size
- are None, default values self.modules_buffers and
- self.broadcast_bucket_size are used instead.
- """
- if bufs is None:
- bufs = self.modules_buffers
- if bucket_size is None:
- bucket_size = self.broadcast_bucket_size
- self._distributed_broadcast_coalesced(
- bufs, bucket_size, authoritative_rank
- )
- def _passing_sync_batchnorm_handle(self, module):
- for layer in module.modules():
- if isinstance(layer, torch.nn.modules.SyncBatchNorm):
- if self.device_type == "cpu":
- self._log_and_throw(
- ValueError,
- "SyncBatchNorm layers only work with GPU modules",
- )
- def _check_comm_hook(self, hook):
- if not callable(hook):
- self._log_and_throw(
- TypeError, "Communication hook must be callable."
- )
- sig = inspect.signature(hook)
- if (
- sig.parameters["bucket"].annotation != inspect._empty
- and sig.parameters["bucket"].annotation != dist.GradBucket
- ):
- self._log_and_throw(
- ValueError,
- "Communication hook: bucket annotation should be dist.GradBucket.",
- )
- if (
- sig.return_annotation != inspect._empty
- and sig.return_annotation != torch.futures.Future[torch.Tensor]
- ):
- self._log_and_throw(
- ValueError,
- "Communication hook: return annotation should be torch.futures.Future[torch.Tensor].",
- )
- if hook.__name__ in [
- "bf16_compress_hook",
- "bf16_compress_wrapper_hook",
- ] and (
- (torch.version.cuda is None and torch.version.hip is None)
- or (
- torch.version.cuda is not None
- and int(torch.version.cuda.split(".")[0]) < 11
- )
- or not dist.is_available()
- or not dist.is_nccl_available()
- or torch.cuda.nccl.version() < (2, 10)
- ):
- self._log_and_throw(
- TypeError,
- "BF16 all reduce communication hook required CUDA 11+ and NCCL 2.10+.",
- )
- @property
- def _distributed_rank(self):
- return dist.get_rank(self.process_group)
- @staticmethod
- def _set_params_and_buffers_to_ignore_for_model(
- module, params_and_buffers_to_ignore
- ):
- """
- Sets parameters and buffers to be ignored by DDP. Expected format for
- parameters is the fully qualified name: {module_name}.{param_name}, and
- similarly, {module_name}.{buffer_name} for buffers. For example:
- params_to_ignore = []
- # NB: model here is vanilla PyTorch module, not yet wrapped with DDP.
- for module_name, module in model.named_modules():
- for param_name, param in module.named_parameters(recurse=False):
- if should_ignore(param):
- # Create expected format
- fqn = f"{module_name}.{param_name}"
- params_to_ignore.append(fqn)
- torch.nn.parallel.DistributedDataParallel._set_params_and_buffers_to_ignore_for_model(
- model,
- params_to_ignore
- )
- """
- # This is a workaround to set parameters and buffers DDP should ignore
- # during synchronization. It will be removed when the API is finalized
- # as part of addressing https://github.com/pytorch/pytorch/issues/43690.
- module._ddp_params_and_buffers_to_ignore = params_and_buffers_to_ignore
- for name, param in module.named_parameters():
- if name in params_and_buffers_to_ignore:
- param._ddp_ignored = True
- for name, buffer in module.named_buffers():
- if name in params_and_buffers_to_ignore:
- buffer._ddp_ignored = True
- def _get_ddp_logging_data(self):
- r"""
- This interface can be called after DistributedDataParallel() is
- constructed. It returns a dictionary of logging data. It could help
- for debugging and analysis. The loggind data includes DistributedDataParallel
- constructor input parameters, some internal states of DistributedDataParallel
- and performance metrics. Simply print the dictorinary and see what
- these metrics are.
- This is a prototype interface and subject to change in the future.
- """
- assert self.logger is not None
- ddp_logging_data = self.logger._get_ddp_logging_data()
- return {**ddp_logging_data.strs_map, **ddp_logging_data.ints_map}
- def _set_ddp_runtime_logging_sample_rate(self, sample_rate):
- r"""
- This interface allows users to set sample_rate of collecting
- runtime stats. The runtime stats will be recorded for the
- first 10 iterations, after 10 iterations runtime stats will be
- recorded once every "sample_rate" training iterations. In
- default, runtime stats are recorded for the first 10 iterations,
- after 10 iterations runtime stats are recorded once every
- "kDDPRuntimeLoggingSampleRate=100" training iterations.
- This is a prototype interface and subject to change in the future.
- """
- if sample_rate < 1:
- self._log_and_throw(
- ValueError,
- "DDP runtime logging sample rate should be equal or greater than 1",
- )
- self.reducer._set_ddp_runtime_logging_sample_rate(sample_rate)
- def _set_static_graph(self):
- """
- It is recommended to set static graph in the DDP constructor, which will
- call this private API internally.
- """
- # If self.static_graph has been set, no need to set it again
- if self.static_graph:
- warnings.warn(
- "You've set static_graph to be True, no need to set it again."
- )
- return
- self.static_graph = True
- self.reducer._set_static_graph()
- assert self.logger is not None
- self.logger._set_static_graph()
- if self.find_unused_parameters:
- warnings.warn(
- "You passed find_unused_parameters=true to DistributedDataParallel, "
- "`_set_static_graph` will detect unused parameters automatically, so "
- "you do not need to set find_unused_parameters=true, just be sure these "
- "unused parameters will not change during training loop while calling "
- "`_set_static_graph`."
- )
|