123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 |
- from typing import Optional
- import torch
- from torch import Tensor
- from torch.nn.parameter import Parameter
- from .module import Module
- from .. import functional as F
- from .. import init
- __all__ = ['Embedding', 'EmbeddingBag']
- class Embedding(Module):
- r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
- This module is often used to store word embeddings and retrieve them using indices.
- The input to the module is a list of indices, and the output is the corresponding
- word embeddings.
- Args:
- num_embeddings (int): size of the dictionary of embeddings
- embedding_dim (int): the size of each embedding vector
- padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
- therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
- i.e. it remains as a fixed "pad". For a newly constructed Embedding,
- the embedding vector at :attr:`padding_idx` will default to all zeros,
- but can be updated to another value to be used as the padding vector.
- max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
- is renormalized to have norm :attr:`max_norm`.
- norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
- scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
- the words in the mini-batch. Default ``False``.
- sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
- See Notes for more details regarding sparse gradients.
- Attributes:
- weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
- initialized from :math:`\mathcal{N}(0, 1)`
- Shape:
- - Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract
- - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
- .. note::
- Keep in mind that only a limited number of optimizers support
- sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
- :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
- .. note::
- When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the
- :attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be
- modified in-place, performing a differentiable operation on ``Embedding.weight`` before
- calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when
- :attr:`max_norm` is not ``None``. For example::
- n, d, m = 3, 5, 7
- embedding = nn.Embedding(n, d, max_norm=True)
- W = torch.randn((m, d), requires_grad=True)
- idx = torch.tensor([1, 2])
- a = embedding.weight.clone() @ W.t() # weight must be cloned for this to be differentiable
- b = embedding(idx) @ W.t() # modifies weight in-place
- out = (a.unsqueeze(0) + b.unsqueeze(1))
- loss = out.sigmoid().prod()
- loss.backward()
- Examples::
- >>> # an Embedding module containing 10 tensors of size 3
- >>> embedding = nn.Embedding(10, 3)
- >>> # a batch of 2 samples of 4 indices each
- >>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
- >>> # xdoctest: +IGNORE_WANT("non-deterministic")
- >>> embedding(input)
- tensor([[[-0.0251, -1.6902, 0.7172],
- [-0.6431, 0.0748, 0.6969],
- [ 1.4970, 1.3448, -0.9685],
- [-0.3677, -2.7265, -0.1685]],
- [[ 1.4970, 1.3448, -0.9685],
- [ 0.4362, -0.4004, 0.9400],
- [-0.6431, 0.0748, 0.6969],
- [ 0.9124, -2.3616, 1.1151]]])
- >>> # example with padding_idx
- >>> embedding = nn.Embedding(10, 3, padding_idx=0)
- >>> input = torch.LongTensor([[0, 2, 0, 5]])
- >>> embedding(input)
- tensor([[[ 0.0000, 0.0000, 0.0000],
- [ 0.1535, -2.0309, 0.9315],
- [ 0.0000, 0.0000, 0.0000],
- [-0.1655, 0.9897, 0.0635]]])
- >>> # example of changing `pad` vector
- >>> padding_idx = 0
- >>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)
- >>> embedding.weight
- Parameter containing:
- tensor([[ 0.0000, 0.0000, 0.0000],
- [-0.7895, -0.7089, -0.0364],
- [ 0.6778, 0.5803, 0.2678]], requires_grad=True)
- >>> with torch.no_grad():
- ... embedding.weight[padding_idx] = torch.ones(3)
- >>> embedding.weight
- Parameter containing:
- tensor([[ 1.0000, 1.0000, 1.0000],
- [-0.7895, -0.7089, -0.0364],
- [ 0.6778, 0.5803, 0.2678]], requires_grad=True)
- """
- __constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx', 'max_norm',
- 'norm_type', 'scale_grad_by_freq', 'sparse']
- num_embeddings: int
- embedding_dim: int
- padding_idx: Optional[int]
- max_norm: Optional[float]
- norm_type: float
- scale_grad_by_freq: bool
- weight: Tensor
- freeze: bool
- sparse: bool
- def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
- max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
- sparse: bool = False, _weight: Optional[Tensor] = None, _freeze: bool = False,
- device=None, dtype=None) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__()
- self.num_embeddings = num_embeddings
- self.embedding_dim = embedding_dim
- if padding_idx is not None:
- if padding_idx > 0:
- assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
- elif padding_idx < 0:
- assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
- padding_idx = self.num_embeddings + padding_idx
- self.padding_idx = padding_idx
- self.max_norm = max_norm
- self.norm_type = norm_type
- self.scale_grad_by_freq = scale_grad_by_freq
- if _weight is None:
- self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs),
- requires_grad=not _freeze)
- self.reset_parameters()
- else:
- assert list(_weight.shape) == [num_embeddings, embedding_dim], \
- 'Shape of weight does not match num_embeddings and embedding_dim'
- self.weight = Parameter(_weight, requires_grad=not _freeze)
- self.sparse = sparse
- def reset_parameters(self) -> None:
- init.normal_(self.weight)
- self._fill_padding_idx_with_zero()
- def _fill_padding_idx_with_zero(self) -> None:
- if self.padding_idx is not None:
- with torch.no_grad():
- self.weight[self.padding_idx].fill_(0)
- def forward(self, input: Tensor) -> Tensor:
- return F.embedding(
- input, self.weight, self.padding_idx, self.max_norm,
- self.norm_type, self.scale_grad_by_freq, self.sparse)
- def extra_repr(self) -> str:
- s = '{num_embeddings}, {embedding_dim}'
- if self.padding_idx is not None:
- s += ', padding_idx={padding_idx}'
- if self.max_norm is not None:
- s += ', max_norm={max_norm}'
- if self.norm_type != 2:
- s += ', norm_type={norm_type}'
- if self.scale_grad_by_freq is not False:
- s += ', scale_grad_by_freq={scale_grad_by_freq}'
- if self.sparse is not False:
- s += ', sparse=True'
- return s.format(**self.__dict__)
- @classmethod
- def from_pretrained(cls, embeddings, freeze=True, padding_idx=None,
- max_norm=None, norm_type=2., scale_grad_by_freq=False,
- sparse=False):
- r"""Creates Embedding instance from given 2-dimensional FloatTensor.
- Args:
- embeddings (Tensor): FloatTensor containing weights for the Embedding.
- First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
- freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
- Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
- padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
- therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
- i.e. it remains as a fixed "pad".
- max_norm (float, optional): See module initialization documentation.
- norm_type (float, optional): See module initialization documentation. Default ``2``.
- scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
- sparse (bool, optional): See module initialization documentation.
- Examples::
- >>> # FloatTensor containing pretrained weights
- >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
- >>> embedding = nn.Embedding.from_pretrained(weight)
- >>> # Get embeddings for index 1
- >>> input = torch.LongTensor([1])
- >>> # xdoctest: +IGNORE_WANT("non-deterministic")
- >>> embedding(input)
- tensor([[ 4.0000, 5.1000, 6.3000]])
- """
- assert embeddings.dim() == 2, \
- 'Embeddings parameter is expected to be 2-dimensional'
- rows, cols = embeddings.shape
- embedding = cls(
- num_embeddings=rows,
- embedding_dim=cols,
- _weight=embeddings,
- _freeze=freeze,
- padding_idx=padding_idx,
- max_norm=max_norm,
- norm_type=norm_type,
- scale_grad_by_freq=scale_grad_by_freq,
- sparse=sparse)
- return embedding
- class EmbeddingBag(Module):
- r"""Computes sums or means of 'bags' of embeddings, without instantiating the
- intermediate embeddings.
- For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`,
- and with 2D inputs, this class
- * with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``,
- * with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``,
- * with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``.
- However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
- operations.
- EmbeddingBag also supports per-sample weights as an argument to the forward
- pass. This scales the output of the Embedding before performing a weighted
- reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the
- only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
- :attr:`per_sample_weights`.
- Args:
- num_embeddings (int): size of the dictionary of embeddings
- embedding_dim (int): the size of each embedding vector
- max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
- is renormalized to have norm :attr:`max_norm`.
- norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
- scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
- the words in the mini-batch. Default ``False``.
- Note: this option is not supported when ``mode="max"``.
- mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
- ``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
- into consideration. ``"mean"`` computes the average of the values
- in the bag, ``"max"`` computes the max value over each bag.
- Default: ``"mean"``
- sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
- Notes for more details regarding sparse gradients. Note: this option is not
- supported when ``mode="max"``.
- include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element
- is equivalent to the size of `indices`. This matches the CSR format.
- padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
- gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
- during training, i.e. it remains as a fixed "pad". For a newly constructed
- EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all
- zeros, but can be updated to another value to be used as the padding vector.
- Note that the embedding vector at :attr:`padding_idx` is excluded from the
- reduction.
- Attributes:
- weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
- initialized from :math:`\mathcal{N}(0, 1)`.
- Examples::
- >>> # an EmbeddingBag module containing 10 tensors of size 3
- >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
- >>> # a batch of 2 samples of 4 indices each
- >>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
- >>> offsets = torch.tensor([0, 4], dtype=torch.long)
- >>> # xdoctest: +IGNORE_WANT("non-deterministic")
- >>> embedding_sum(input, offsets)
- tensor([[-0.8861, -5.4350, -0.0523],
- [ 1.1306, -2.5798, -1.0044]])
- >>> # Example with padding_idx
- >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2)
- >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long)
- >>> offsets = torch.tensor([0, 4], dtype=torch.long)
- >>> embedding_sum(input, offsets)
- tensor([[ 0.0000, 0.0000, 0.0000],
- [-0.7082, 3.2145, -2.6251]])
- >>> # An EmbeddingBag can be loaded from an Embedding like so
- >>> embedding = nn.Embedding(10, 3, padding_idx=2)
- >>> embedding_sum = nn.EmbeddingBag.from_pretrained(
- embedding.weight,
- padding_idx=embedding.padding_idx,
- mode='sum')
- """
- __constants__ = ['num_embeddings', 'embedding_dim', 'max_norm', 'norm_type',
- 'scale_grad_by_freq', 'mode', 'sparse', 'include_last_offset',
- 'padding_idx']
- num_embeddings: int
- embedding_dim: int
- max_norm: Optional[float]
- norm_type: float
- scale_grad_by_freq: bool
- weight: Tensor
- mode: str
- sparse: bool
- include_last_offset: bool
- padding_idx: Optional[int]
- def __init__(self, num_embeddings: int, embedding_dim: int,
- max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
- mode: str = 'mean', sparse: bool = False, _weight: Optional[Tensor] = None,
- include_last_offset: bool = False, padding_idx: Optional[int] = None,
- device=None, dtype=None) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__()
- self.num_embeddings = num_embeddings
- self.embedding_dim = embedding_dim
- self.max_norm = max_norm
- self.norm_type = norm_type
- self.scale_grad_by_freq = scale_grad_by_freq
- if padding_idx is not None:
- if padding_idx > 0:
- assert padding_idx < self.num_embeddings, 'padding_idx must be within num_embeddings'
- elif padding_idx < 0:
- assert padding_idx >= -self.num_embeddings, 'padding_idx must be within num_embeddings'
- padding_idx = self.num_embeddings + padding_idx
- self.padding_idx = padding_idx
- if _weight is None:
- self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs))
- self.reset_parameters()
- else:
- assert list(_weight.shape) == [num_embeddings, embedding_dim], \
- 'Shape of weight does not match num_embeddings and embedding_dim'
- self.weight = Parameter(_weight)
- self.mode = mode
- self.sparse = sparse
- self.include_last_offset = include_last_offset
- def reset_parameters(self) -> None:
- init.normal_(self.weight)
- self._fill_padding_idx_with_zero()
- def _fill_padding_idx_with_zero(self) -> None:
- if self.padding_idx is not None:
- with torch.no_grad():
- self.weight[self.padding_idx].fill_(0)
- def forward(self, input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None) -> Tensor:
- """Forward pass of EmbeddingBag.
- Args:
- input (Tensor): Tensor containing bags of indices into the embedding matrix.
- offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
- the starting index position of each bag (sequence) in :attr:`input`.
- per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
- to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
- must have exactly the same shape as input and is treated as having the same
- :attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.
- Returns:
- Tensor output shape of `(B, embedding_dim)`.
- .. note::
- A few notes about ``input`` and ``offsets``:
- - :attr:`input` and :attr:`offsets` have to be of the same type, either int or long
- - If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
- each of fixed length ``N``, and this will return ``B`` values aggregated in a way
- depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.
- - If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
- multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing the
- starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`,
- :attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have
- returned vectors filled by zeros.
- """
- return F.embedding_bag(input, self.weight, offsets,
- self.max_norm, self.norm_type,
- self.scale_grad_by_freq, self.mode, self.sparse,
- per_sample_weights, self.include_last_offset,
- self.padding_idx)
- def extra_repr(self) -> str:
- s = '{num_embeddings}, {embedding_dim}'
- if self.max_norm is not None:
- s += ', max_norm={max_norm}'
- if self.norm_type != 2:
- s += ', norm_type={norm_type}'
- if self.scale_grad_by_freq is not False:
- s += ', scale_grad_by_freq={scale_grad_by_freq}'
- s += ', mode={mode}'
- if self.padding_idx is not None:
- s += ', padding_idx={padding_idx}'
- return s.format(**{k: repr(v) for k, v in self.__dict__.items()})
- @classmethod
- def from_pretrained(cls, embeddings: Tensor, freeze: bool = True, max_norm: Optional[float] = None,
- norm_type: float = 2., scale_grad_by_freq: bool = False,
- mode: str = 'mean', sparse: bool = False, include_last_offset: bool = False,
- padding_idx: Optional[int] = None) -> 'EmbeddingBag':
- r"""Creates EmbeddingBag instance from given 2-dimensional FloatTensor.
- Args:
- embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.
- First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.
- freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
- Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``
- max_norm (float, optional): See module initialization documentation. Default: ``None``
- norm_type (float, optional): See module initialization documentation. Default ``2``.
- scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
- mode (str, optional): See module initialization documentation. Default: ``"mean"``
- sparse (bool, optional): See module initialization documentation. Default: ``False``.
- include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.
- padding_idx (int, optional): See module initialization documentation. Default: ``None``.
- Examples::
- >>> # FloatTensor containing pretrained weights
- >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
- >>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)
- >>> # Get embeddings for index 1
- >>> input = torch.LongTensor([[1, 0]])
- >>> # xdoctest: +IGNORE_WANT("non-deterministic")
- >>> embeddingbag(input)
- tensor([[ 2.5000, 3.7000, 4.6500]])
- """
- assert embeddings.dim() == 2, \
- 'Embeddings parameter is expected to be 2-dimensional'
- rows, cols = embeddings.shape
- embeddingbag = cls(
- num_embeddings=rows,
- embedding_dim=cols,
- _weight=embeddings,
- max_norm=max_norm,
- norm_type=norm_type,
- scale_grad_by_freq=scale_grad_by_freq,
- mode=mode,
- sparse=sparse,
- include_last_offset=include_last_offset,
- padding_idx=padding_idx)
- embeddingbag.weight.requires_grad = not freeze
- return embeddingbag
|