123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- from .module import Module
- from .. import functional as F
- from torch import Tensor
- __all__ = ['PixelShuffle', 'PixelUnshuffle']
- class PixelShuffle(Module):
- r"""Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
- to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.
- This is useful for implementing efficient sub-pixel convolution
- with a stride of :math:`1/r`.
- See the paper:
- `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
- by Shi et. al (2016) for more details.
- Args:
- upscale_factor (int): factor to increase spatial resolution by
- Shape:
- - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
- - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
- .. math::
- C_{out} = C_{in} \div \text{upscale\_factor}^2
- .. math::
- H_{out} = H_{in} \times \text{upscale\_factor}
- .. math::
- W_{out} = W_{in} \times \text{upscale\_factor}
- Examples::
- >>> pixel_shuffle = nn.PixelShuffle(3)
- >>> input = torch.randn(1, 9, 4, 4)
- >>> output = pixel_shuffle(input)
- >>> print(output.size())
- torch.Size([1, 1, 12, 12])
- .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
- https://arxiv.org/abs/1609.05158
- """
- __constants__ = ['upscale_factor']
- upscale_factor: int
- def __init__(self, upscale_factor: int) -> None:
- super().__init__()
- self.upscale_factor = upscale_factor
- def forward(self, input: Tensor) -> Tensor:
- return F.pixel_shuffle(input, self.upscale_factor)
- def extra_repr(self) -> str:
- return 'upscale_factor={}'.format(self.upscale_factor)
- class PixelUnshuffle(Module):
- r"""Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
- in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
- :math:`(*, C \times r^2, H, W)`, where r is a downscale factor.
- See the paper:
- `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
- by Shi et. al (2016) for more details.
- Args:
- downscale_factor (int): factor to decrease spatial resolution by
- Shape:
- - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
- - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
- .. math::
- C_{out} = C_{in} \times \text{downscale\_factor}^2
- .. math::
- H_{out} = H_{in} \div \text{downscale\_factor}
- .. math::
- W_{out} = W_{in} \div \text{downscale\_factor}
- Examples::
- >>> pixel_unshuffle = nn.PixelUnshuffle(3)
- >>> input = torch.randn(1, 1, 12, 12)
- >>> output = pixel_unshuffle(input)
- >>> print(output.size())
- torch.Size([1, 9, 4, 4])
- .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
- https://arxiv.org/abs/1609.05158
- """
- __constants__ = ['downscale_factor']
- downscale_factor: int
- def __init__(self, downscale_factor: int) -> None:
- super().__init__()
- self.downscale_factor = downscale_factor
- def forward(self, input: Tensor) -> Tensor:
- return F.pixel_unshuffle(input, self.downscale_factor)
- def extra_repr(self) -> str:
- return 'downscale_factor={}'.format(self.downscale_factor)
|