123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- from torch import Tensor
- from .batchnorm import _LazyNormBase, _NormBase
- from .. import functional as F
- __all__ = ['InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d', 'LazyInstanceNorm1d',
- 'LazyInstanceNorm2d', 'LazyInstanceNorm3d']
- class _InstanceNorm(_NormBase):
- def __init__(
- self,
- num_features: int,
- eps: float = 1e-5,
- momentum: float = 0.1,
- affine: bool = False,
- track_running_stats: bool = False,
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- num_features, eps, momentum, affine, track_running_stats, **factory_kwargs)
- def _check_input_dim(self, input):
- raise NotImplementedError
- def _get_no_batch_dim(self):
- raise NotImplementedError
- def _handle_no_batch_input(self, input):
- return self._apply_instance_norm(input.unsqueeze(0)).squeeze(0)
- def _apply_instance_norm(self, input):
- return F.instance_norm(
- input, self.running_mean, self.running_var, self.weight, self.bias,
- self.training or not self.track_running_stats, self.momentum, self.eps)
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- version = local_metadata.get('version', None)
- # at version 1: removed running_mean and running_var when
- # track_running_stats=False (default)
- if version is None and not self.track_running_stats:
- running_stats_keys = []
- for name in ('running_mean', 'running_var'):
- key = prefix + name
- if key in state_dict:
- running_stats_keys.append(key)
- if len(running_stats_keys) > 0:
- error_msgs.append(
- 'Unexpected running stats buffer(s) {names} for {klass} '
- 'with track_running_stats=False. If state_dict is a '
- 'checkpoint saved before 0.4.0, this may be expected '
- 'because {klass} does not track running stats by default '
- 'since 0.4.0. Please remove these keys from state_dict. If '
- 'the running stats are actually needed, instead set '
- 'track_running_stats=True in {klass} to enable them. See '
- 'the documentation of {klass} for details.'
- .format(names=" and ".join('"{}"'.format(k) for k in running_stats_keys),
- klass=self.__class__.__name__))
- for key in running_stats_keys:
- state_dict.pop(key)
- super()._load_from_state_dict(
- state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs)
- def forward(self, input: Tensor) -> Tensor:
- self._check_input_dim(input)
- if input.dim() == self._get_no_batch_dim():
- return self._handle_no_batch_input(input)
- return self._apply_instance_norm(input)
- class InstanceNorm1d(_InstanceNorm):
- r"""Applies Instance Normalization over a 2D (unbatched) or 3D (batched) input
- as described in the paper
- `Instance Normalization: The Missing Ingredient for Fast Stylization
- <https://arxiv.org/abs/1607.08022>`__.
- .. math::
- y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
- The mean and standard-deviation are calculated per-dimension separately
- for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
- of size `C` (where `C` is the number of features or channels of the input) if :attr:`affine` is ``True``.
- The standard-deviation is calculated via the biased estimator, equivalent to
- `torch.var(input, unbiased=False)`.
- By default, this layer uses instance statistics computed from input data in
- both training and evaluation modes.
- If :attr:`track_running_stats` is set to ``True``, during training this
- layer keeps running estimates of its computed mean and variance, which are
- then used for normalization during evaluation. The running estimates are
- kept with a default :attr:`momentum` of 0.1.
- .. note::
- This :attr:`momentum` argument is different from one used in optimizer
- classes and the conventional notion of momentum. Mathematically, the
- update rule for running statistics here is
- :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
- where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
- new observed value.
- .. note::
- :class:`InstanceNorm1d` and :class:`LayerNorm` are very similar, but
- have some subtle differences. :class:`InstanceNorm1d` is applied
- on each channel of channeled data like multidimensional time series, but
- :class:`LayerNorm` is usually applied on entire sample and often in NLP
- tasks. Additionally, :class:`LayerNorm` applies elementwise affine
- transform, while :class:`InstanceNorm1d` usually don't apply affine
- transform.
- Args:
- num_features: number of features or channels :math:`C` of the input
- eps: a value added to the denominator for numerical stability. Default: 1e-5
- momentum: the value used for the running_mean and running_var computation. Default: 0.1
- affine: a boolean value that when set to ``True``, this module has
- learnable affine parameters, initialized the same way as done for batch normalization.
- Default: ``False``.
- track_running_stats: a boolean value that when set to ``True``, this
- module tracks the running mean and variance, and when set to ``False``,
- this module does not track such statistics and always uses batch
- statistics in both training and eval modes. Default: ``False``
- Shape:
- - Input: :math:`(N, C, L)` or :math:`(C, L)`
- - Output: :math:`(N, C, L)` or :math:`(C, L)` (same shape as input)
- Examples::
- >>> # Without Learnable Parameters
- >>> m = nn.InstanceNorm1d(100)
- >>> # With Learnable Parameters
- >>> m = nn.InstanceNorm1d(100, affine=True)
- >>> input = torch.randn(20, 100, 40)
- >>> output = m(input)
- """
- def _get_no_batch_dim(self):
- return 2
- def _check_input_dim(self, input):
- if input.dim() not in (2, 3):
- raise ValueError('expected 2D or 3D input (got {}D input)'
- .format(input.dim()))
- class LazyInstanceNorm1d(_LazyNormBase, _InstanceNorm):
- r"""A :class:`torch.nn.InstanceNorm1d` module with lazy initialization of
- the ``num_features`` argument of the :class:`InstanceNorm1d` that is inferred
- from the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight`, `bias`,
- `running_mean` and `running_var`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- num_features: :math:`C` from an expected input of size
- :math:`(N, C, L)` or :math:`(C, L)`
- eps: a value added to the denominator for numerical stability. Default: 1e-5
- momentum: the value used for the running_mean and running_var computation. Default: 0.1
- affine: a boolean value that when set to ``True``, this module has
- learnable affine parameters, initialized the same way as done for batch normalization.
- Default: ``False``.
- track_running_stats: a boolean value that when set to ``True``, this
- module tracks the running mean and variance, and when set to ``False``,
- this module does not track such statistics and always uses batch
- statistics in both training and eval modes. Default: ``False``
- Shape:
- - Input: :math:`(N, C, L)` or :math:`(C, L)`
- - Output: :math:`(N, C, L)` or :math:`(C, L)` (same shape as input)
- """
- cls_to_become = InstanceNorm1d # type: ignore[assignment]
- def _get_no_batch_dim(self):
- return 2
- def _check_input_dim(self, input):
- if input.dim() not in (2, 3):
- raise ValueError('expected 2D or 3D input (got {}D input)'
- .format(input.dim()))
- class InstanceNorm2d(_InstanceNorm):
- r"""Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs
- with additional channel dimension) as described in the paper
- `Instance Normalization: The Missing Ingredient for Fast Stylization
- <https://arxiv.org/abs/1607.08022>`__.
- .. math::
- y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
- The mean and standard-deviation are calculated per-dimension separately
- for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
- of size `C` (where `C` is the input size) if :attr:`affine` is ``True``.
- The standard-deviation is calculated via the biased estimator, equivalent to
- `torch.var(input, unbiased=False)`.
- By default, this layer uses instance statistics computed from input data in
- both training and evaluation modes.
- If :attr:`track_running_stats` is set to ``True``, during training this
- layer keeps running estimates of its computed mean and variance, which are
- then used for normalization during evaluation. The running estimates are
- kept with a default :attr:`momentum` of 0.1.
- .. note::
- This :attr:`momentum` argument is different from one used in optimizer
- classes and the conventional notion of momentum. Mathematically, the
- update rule for running statistics here is
- :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
- where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
- new observed value.
- .. note::
- :class:`InstanceNorm2d` and :class:`LayerNorm` are very similar, but
- have some subtle differences. :class:`InstanceNorm2d` is applied
- on each channel of channeled data like RGB images, but
- :class:`LayerNorm` is usually applied on entire sample and often in NLP
- tasks. Additionally, :class:`LayerNorm` applies elementwise affine
- transform, while :class:`InstanceNorm2d` usually don't apply affine
- transform.
- Args:
- num_features: :math:`C` from an expected input of size
- :math:`(N, C, H, W)` or :math:`(C, H, W)`
- eps: a value added to the denominator for numerical stability. Default: 1e-5
- momentum: the value used for the running_mean and running_var computation. Default: 0.1
- affine: a boolean value that when set to ``True``, this module has
- learnable affine parameters, initialized the same way as done for batch normalization.
- Default: ``False``.
- track_running_stats: a boolean value that when set to ``True``, this
- module tracks the running mean and variance, and when set to ``False``,
- this module does not track such statistics and always uses batch
- statistics in both training and eval modes. Default: ``False``
- Shape:
- - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`
- - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
- Examples::
- >>> # Without Learnable Parameters
- >>> m = nn.InstanceNorm2d(100)
- >>> # With Learnable Parameters
- >>> m = nn.InstanceNorm2d(100, affine=True)
- >>> input = torch.randn(20, 100, 35, 45)
- >>> output = m(input)
- """
- def _get_no_batch_dim(self):
- return 3
- def _check_input_dim(self, input):
- if input.dim() not in (3, 4):
- raise ValueError('expected 3D or 4D input (got {}D input)'
- .format(input.dim()))
- class LazyInstanceNorm2d(_LazyNormBase, _InstanceNorm):
- r"""A :class:`torch.nn.InstanceNorm2d` module with lazy initialization of
- the ``num_features`` argument of the :class:`InstanceNorm2d` that is inferred
- from the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight`, `bias`,
- `running_mean` and `running_var`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- num_features: :math:`C` from an expected input of size
- :math:`(N, C, H, W)` or :math:`(C, H, W)`
- eps: a value added to the denominator for numerical stability. Default: 1e-5
- momentum: the value used for the running_mean and running_var computation. Default: 0.1
- affine: a boolean value that when set to ``True``, this module has
- learnable affine parameters, initialized the same way as done for batch normalization.
- Default: ``False``.
- track_running_stats: a boolean value that when set to ``True``, this
- module tracks the running mean and variance, and when set to ``False``,
- this module does not track such statistics and always uses batch
- statistics in both training and eval modes. Default: ``False``
- Shape:
- - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`
- - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
- """
- cls_to_become = InstanceNorm2d # type: ignore[assignment]
- def _get_no_batch_dim(self):
- return 3
- def _check_input_dim(self, input):
- if input.dim() not in (3, 4):
- raise ValueError('expected 3D or 4D input (got {}D input)'
- .format(input.dim()))
- class InstanceNorm3d(_InstanceNorm):
- r"""Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs
- with additional channel dimension) as described in the paper
- `Instance Normalization: The Missing Ingredient for Fast Stylization
- <https://arxiv.org/abs/1607.08022>`__.
- .. math::
- y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
- The mean and standard-deviation are calculated per-dimension separately
- for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
- of size C (where C is the input size) if :attr:`affine` is ``True``.
- The standard-deviation is calculated via the biased estimator, equivalent to
- `torch.var(input, unbiased=False)`.
- By default, this layer uses instance statistics computed from input data in
- both training and evaluation modes.
- If :attr:`track_running_stats` is set to ``True``, during training this
- layer keeps running estimates of its computed mean and variance, which are
- then used for normalization during evaluation. The running estimates are
- kept with a default :attr:`momentum` of 0.1.
- .. note::
- This :attr:`momentum` argument is different from one used in optimizer
- classes and the conventional notion of momentum. Mathematically, the
- update rule for running statistics here is
- :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
- where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
- new observed value.
- .. note::
- :class:`InstanceNorm3d` and :class:`LayerNorm` are very similar, but
- have some subtle differences. :class:`InstanceNorm3d` is applied
- on each channel of channeled data like 3D models with RGB color, but
- :class:`LayerNorm` is usually applied on entire sample and often in NLP
- tasks. Additionally, :class:`LayerNorm` applies elementwise affine
- transform, while :class:`InstanceNorm3d` usually don't apply affine
- transform.
- Args:
- num_features: :math:`C` from an expected input of size
- :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
- eps: a value added to the denominator for numerical stability. Default: 1e-5
- momentum: the value used for the running_mean and running_var computation. Default: 0.1
- affine: a boolean value that when set to ``True``, this module has
- learnable affine parameters, initialized the same way as done for batch normalization.
- Default: ``False``.
- track_running_stats: a boolean value that when set to ``True``, this
- module tracks the running mean and variance, and when set to ``False``,
- this module does not track such statistics and always uses batch
- statistics in both training and eval modes. Default: ``False``
- Shape:
- - Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
- - Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input)
- Examples::
- >>> # Without Learnable Parameters
- >>> m = nn.InstanceNorm3d(100)
- >>> # With Learnable Parameters
- >>> m = nn.InstanceNorm3d(100, affine=True)
- >>> input = torch.randn(20, 100, 35, 45, 10)
- >>> output = m(input)
- """
- def _get_no_batch_dim(self):
- return 4
- def _check_input_dim(self, input):
- if input.dim() not in (4, 5):
- raise ValueError('expected 4D or 5D input (got {}D input)'
- .format(input.dim()))
- class LazyInstanceNorm3d(_LazyNormBase, _InstanceNorm):
- r"""A :class:`torch.nn.InstanceNorm3d` module with lazy initialization of
- the ``num_features`` argument of the :class:`InstanceNorm3d` that is inferred
- from the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight`, `bias`,
- `running_mean` and `running_var`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- num_features: :math:`C` from an expected input of size
- :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
- eps: a value added to the denominator for numerical stability. Default: 1e-5
- momentum: the value used for the running_mean and running_var computation. Default: 0.1
- affine: a boolean value that when set to ``True``, this module has
- learnable affine parameters, initialized the same way as done for batch normalization.
- Default: ``False``.
- track_running_stats: a boolean value that when set to ``True``, this
- module tracks the running mean and variance, and when set to ``False``,
- this module does not track such statistics and always uses batch
- statistics in both training and eval modes. Default: ``False``
- Shape:
- - Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
- - Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input)
- """
- cls_to_become = InstanceNorm3d # type: ignore[assignment]
- def _get_no_batch_dim(self):
- return 4
- def _check_input_dim(self, input):
- if input.dim() not in (4, 5):
- raise ValueError('expected 4D or 5D input (got {}D input)'
- .format(input.dim()))
|