123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- from ._ops import OpOverload
- from typing import Set
- import traceback
- import torch
- __all__ = ['Library', 'impl', 'define']
- # Set containing the combination of (namespace, operator, DispatchKey) for which a new kernel has been registered
- # The keys in the set are of the form `namespace + "/" + op_name + "/" + dispatch_key`.
- # This set is maintained to ensure that two libraries don't try to override the exact same functionality to avoid
- # libraries calling into kernels not intended to be called.
- _impls: Set[str] = set()
- # prim is reserved by TorchScript interpreter
- _reserved_namespaces = ['prim']
- class Library:
- """
- A class to create libraries that can be used to register new operators or
- override operators in existing libraries from Python.
- A user can optionally pass in a dispatch keyname if they only want to register
- kernels corresponding to only one specific dispatch key.
- To create a library to override operators in an existing library (with name ns), set the kind to "IMPL".
- To create a new library (with name ns) to register new operators, set the kind to "DEF".
- Args:
- ns: library name
- kind: "DEF", "IMPL" (default: "IMPL")
- dispatch_key: PyTorch dispatch key (default: "")
- """
- def __init__(self, ns, kind, dispatch_key=""):
- if kind != "IMPL" and kind != "DEF":
- raise ValueError("Unsupported kind: ", kind)
- if ns in _reserved_namespaces and kind == "DEF":
- raise ValueError(ns, " is a reserved namespace. Please try creating a library with another name.")
- frame = traceback.extract_stack(limit=3)[0]
- filename, lineno = frame.filename, frame.lineno
- self.m = torch._C._dispatch_library(kind, ns, dispatch_key, filename, lineno)
- self.ns = ns
- self._op_impls = set()
- self.kind = kind
- self.dispatch_key = dispatch_key
- def __repr__(self):
- return "Library(kind={}, ns={}, dispatch_key={})>".format(self.kind, self.ns, self.dispatch_key)
- def define(self, schema, alias_analysis=""):
- r'''Defines a new operator and its semantics in the ns namespace.
- Args:
- schema: function schema to define a new operator.
- alias_analysis (optional): Indicates if the aliasing properties of the operator arguments can be
- inferred from the schema (default behavior) or not ("CONSERVATIVE").
- Returns:
- name of the operator as inferred from the schema.
- Example::
- >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LIBRARY)
- >>> my_lib = Library("foo", "DEF")
- >>> my_lib.define("sum(Tensor self) -> Tensor")
- '''
- # This is added because we also want to disallow PURE_FUNCTION alias analysis which is a valid
- # AliasAnalysis type in C++
- if alias_analysis not in ["", "FROM_SCHEMA", "CONSERVATIVE"]:
- raise RuntimeError("Invalid alias_analysis type {}".format(alias_analysis))
- return self.m.define(schema, alias_analysis)
- def impl(self, op_name, fn, dispatch_key=''):
- r'''Registers the function implementation for an operator defined in the library.
- Args:
- op_name: operator name (along with the overload) or OpOverload object.
- fn: function that's the operator implementation for the input dispatch key.
- dispatch_key: dispatch key that the input function should be registered for. By default, it uses
- the dispatch key that the library was created with.
- Example::
- >>> # xdoctest: +SKIP
- >>> my_lib = Library("aten", "IMPL")
- >>> def div_cpu(self, other):
- >>> return self * (1 / other)
- >>> my_lib.impl("div.Tensor", "CPU")
- '''
- if not callable(fn):
- raise TypeError("Input function is required to be a callable but found type {}".format(type(fn)))
- if dispatch_key == '':
- dispatch_key = self.dispatch_key
- if isinstance(op_name, str):
- name = op_name
- elif isinstance(op_name, OpOverload):
- name = op_name._schema.name
- overload_name = op_name._schema.overload_name
- if overload_name != '':
- name = name + '.' + overload_name
- else:
- raise RuntimeError("impl should be passed either a name or an OpOverload object as the first argument")
- key = self.ns + "/" + name.split("::")[-1] + "/" + dispatch_key
- if key in _impls:
- # TODO: in future, add more info about where the existing function is registered (this info is
- # today already returned by the C++ warning when impl is called but we error out before that)
- raise RuntimeError("This is not allowed since there's already a kernel registered from python overriding {}"
- "'s behavior for {} dispatch key and {} namespace.".
- format(name.split("::")[-1], dispatch_key, self.ns))
- if dispatch_key == "Meta":
- dispatcher_op_name = name
- if '::' not in dispatcher_op_name:
- dispatcher_op_name = f'{self.ns}::{dispatcher_op_name}'
- # Internally, we shouldn't be registering meta kernels for any operators that
- # have CompositeImplicitAutograd kernels.
- # Instead, we should be letting those decompositions run, and writing meta kernels
- # only for the base operators.
- if torch._C._dispatch_has_kernel_for_dispatch_key(dispatcher_op_name, "CompositeImplicitAutograd"):
- raise RuntimeError(
- f"We should not register a meta kernel directly to the operator '{name}',"
- " because it has a CompositeImplicitAutograd kernel in core."
- " Instead we should let the operator decompose, and ensure that we have meta kernels"
- " for the base ops that it decomposes into.")
- self.m.impl(name, dispatch_key if dispatch_key != "" else "CompositeImplicitAutograd", fn)
- _impls.add(key)
- self._op_impls.add(key)
- def __del__(self):
- # _op_impls might not have been initialized if an error was thrown in __init__
- _op_impls_ = getattr(self, '_op_impls', None)
- if _op_impls_:
- for key in self._op_impls:
- _impls.remove(key)
- del self.m
- # decorator to register python functions for library ops
- # Note: this decorator API should remain consistent with `Library.impl` API
- def impl(lib, name, dispatch_key=""):
- def wrap(f):
- lib.impl(name, f, dispatch_key)
- return f
- return wrap
- def define(lib, schema, alias_analysis=""):
- def wrap(f):
- name = lib.define(schema, alias_analysis)
- lib.impl(name, f)
- return f
- return wrap
|