123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- import torch
- from torch import Tensor
- aten = torch.ops.aten
- from typing import Optional, List, Dict, Set
- import inspect
- from torch.fx.operator_schemas import get_signature_for_torch_op
- import warnings
- decomposition_table: Dict[str, torch.jit.ScriptFunction] = {}
- function_name_set: Set[str] = set()
- def check_decomposition_has_type_annotations(f):
- inspect_empty = inspect._empty # type: ignore[attr-defined]
- sig = inspect.signature(f)
- for param in sig.parameters.values():
- assert param.annotation != inspect_empty, \
- "No signature on param {name} for function {func}".format(name=param.name, func=f.name)
- assert sig.return_annotation != inspect_empty, "No return annotation for function {func}".format(func=f.name)
- def signatures_match(decomposition_sig, torch_op_sig):
- decomp_params = decomposition_sig.parameters
- op_params = torch_op_sig.parameters
- if len(decomp_params) != len(op_params):
- return False
- for decomp_param, op_param in zip(decomp_params.values(), op_params.values()):
- # can't check full equality yet because not all fields are correcly deduced
- # in the torch_op_sig - like default value
- # can't check 'kind' bc
- # kwarg-only values with defaults not yet supported in TS
- inspect_empty = inspect._empty # type: ignore[attr-defined]
- for field in ['name', 'annotation']:
- if field == 'name' and decomp_param.name == "self":
- warnings.warn("PyTorch uses 'input' instead of 'self' on public api")
- if getattr(decomp_param, field) != getattr(op_param, field):
- return False
- decomp_default = decomp_param.default
- op_default = op_param.default
- # default value not always correctly inferred as being present on torch schema,
- # but if specified on both they should be equal
- if decomp_default != inspect_empty and op_default != inspect_empty:
- if decomp_default != op_default:
- return False
- return decomposition_sig.return_annotation == torch_op_sig.return_annotation
- def register_decomposition(aten_op, registry=None):
- def decomposition_decorator(f):
- nonlocal registry
- if registry is None:
- registry = decomposition_table
- check_decomposition_has_type_annotations(f)
- torch_op_sigs, torch_op_schemas = get_signature_for_torch_op(aten_op, return_schemas=True)
- decomposition_sig = inspect.signature(f)
- found_index = None
- for i, torch_op_sig in enumerate(torch_op_sigs):
- if signatures_match(decomposition_sig, torch_op_sig):
- found_index = i
- break
- assert found_index is not None, "Could not find matching signature: " + str(f)
- # Need unique name for jit function serialization
- assert f.__name__ not in function_name_set, "Duplicated function name {}".format(f.__name__)
- function_name_set.add(f.__name__)
- scripted_func = torch.jit.script(f)
- torch._C._jit_pass_inline(scripted_func.graph)
- for _ in range(2):
- torch._C._jit_pass_peephole(scripted_func.graph)
- torch._C._jit_pass_constant_propagation(scripted_func.graph)
- registry[str(torch_op_schemas[found_index])] = scripted_func
- return f
- return decomposition_decorator
- # TODO: replace torch.sigmoid -> aten.sigmoid
- @register_decomposition(aten.var)
- def var_decomposition(input: Tensor, dim: Optional[List[int]] = None, correction: Optional[int] = None,
- keepdim: bool = False) -> Tensor:
- if dim is None:
- dim_i: List[int] = []
- dim = dim_i
- if isinstance(dim, (tuple, list)) and len(dim) == 0:
- n = input.numel()
- else:
- n = 1
- for dim_i in dim: # type: ignore[assignment]
- n *= input.shape[dim_i] # type: ignore[call-overload]
- mean = aten.mean(input, dim, True)
- sub = input - mean
- sq = sub * sub
- sum = aten.sum(sq, dim, keepdim)
- if correction is not None:
- n = n - correction
- return sum / n
- @register_decomposition(aten.var)
- def var(input: Tensor, unbiased: bool = True) -> Tensor:
- return var_decomposition(input, correction=(1 if unbiased else 0))
|