123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900 |
- //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains some functions that are useful for math stuff.
- //
- //===----------------------------------------------------------------------===//
- #pragma once
- #include <algorithm>
- #include <cassert>
- #include <climits>
- #include <cmath>
- #include <cstdint>
- #include <cstring>
- #include <limits>
- #include <type_traits>
- #ifdef __ANDROID_NDK__
- #include <android/api-level.h>
- #endif
- #ifndef __has_builtin
- #define __has_builtin(x) 0
- #endif
- #ifndef LLVM_GNUC_PREREQ
- #if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__)
- #define LLVM_GNUC_PREREQ(maj, min, patch) \
- ((__GNUC__ << 20) + (__GNUC_MINOR__ << 10) + __GNUC_PATCHLEVEL__ >= \
- ((maj) << 20) + ((min) << 10) + (patch))
- #elif defined(__GNUC__) && defined(__GNUC_MINOR__)
- #define LLVM_GNUC_PREREQ(maj, min, patch) \
- ((__GNUC__ << 20) + (__GNUC_MINOR__ << 10) >= ((maj) << 20) + ((min) << 10))
- #else
- #define LLVM_GNUC_PREREQ(maj, min, patch) 0
- #endif
- #endif
- #ifdef _MSC_VER
- // Declare these intrinsics manually rather including intrin.h. It's very
- // expensive, and MathExtras.h is popular.
- // #include <intrin.h>
- extern "C" {
- unsigned char _BitScanForward(unsigned long* _Index, unsigned long _Mask);
- unsigned char _BitScanForward64(unsigned long* _Index, unsigned __int64 _Mask);
- unsigned char _BitScanReverse(unsigned long* _Index, unsigned long _Mask);
- unsigned char _BitScanReverse64(unsigned long* _Index, unsigned __int64 _Mask);
- }
- #endif
- namespace c10 {
- namespace llvm {
- /// The behavior an operation has on an input of 0.
- enum ZeroBehavior {
- /// The returned value is undefined.
- ZB_Undefined,
- /// The returned value is numeric_limits<T>::max()
- ZB_Max,
- /// The returned value is numeric_limits<T>::digits
- ZB_Width
- };
- namespace detail {
- template <typename T, std::size_t SizeOfT>
- struct TrailingZerosCounter {
- static std::size_t count(T Val, ZeroBehavior) {
- if (!Val)
- return std::numeric_limits<T>::digits;
- if (Val & 0x1)
- return 0;
- // Bisection method.
- std::size_t ZeroBits = 0;
- T Shift = std::numeric_limits<T>::digits >> 1;
- T Mask = std::numeric_limits<T>::max() >> Shift;
- while (Shift) {
- if ((Val & Mask) == 0) {
- Val >>= Shift;
- ZeroBits |= Shift;
- }
- Shift >>= 1;
- Mask >>= Shift;
- }
- return ZeroBits;
- }
- };
- #if (defined(__GNUC__) && __GNUC__ >= 4) || defined(_MSC_VER)
- template <typename T>
- struct TrailingZerosCounter<T, 4> {
- static std::size_t count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 32;
- #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
- return __builtin_ctz(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanForward(&Index, Val);
- return Index;
- #endif
- }
- };
- #if !defined(_MSC_VER) || defined(_M_X64)
- template <typename T>
- struct TrailingZerosCounter<T, 8> {
- static std::size_t count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 64;
- #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
- return __builtin_ctzll(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanForward64(&Index, Val);
- return Index;
- #endif
- }
- };
- #endif
- #endif
- } // namespace detail
- /// Count number of 0's from the least significant bit to the most
- /// stopping at the first 1.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
- /// valid arguments.
- template <typename T>
- std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
- static_assert(
- std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
- }
- namespace detail {
- template <typename T, std::size_t SizeOfT>
- struct LeadingZerosCounter {
- static std::size_t count(T Val, ZeroBehavior) {
- if (!Val)
- return std::numeric_limits<T>::digits;
- // Bisection method.
- std::size_t ZeroBits = 0;
- for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
- T Tmp = Val >> Shift;
- if (Tmp)
- Val = Tmp;
- else
- ZeroBits |= Shift;
- }
- return ZeroBits;
- }
- };
- #if (defined(__GNUC__) && __GNUC__ >= 4) || defined(_MSC_VER)
- template <typename T>
- struct LeadingZerosCounter<T, 4> {
- static std::size_t count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 32;
- #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
- return __builtin_clz(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanReverse(&Index, Val);
- return Index ^ 31;
- #endif
- }
- };
- #if !defined(_MSC_VER) || defined(_M_X64)
- template <typename T>
- struct LeadingZerosCounter<T, 8> {
- static std::size_t count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 64;
- #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
- return __builtin_clzll(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanReverse64(&Index, Val);
- return Index ^ 63;
- #endif
- }
- };
- #endif
- #endif
- } // namespace detail
- /// Count number of 0's from the most significant bit to the least
- /// stopping at the first 1.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
- /// valid arguments.
- template <typename T>
- std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
- static_assert(
- std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
- }
- /// Get the index of the first set bit starting from the least
- /// significant bit.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
- /// valid arguments.
- template <typename T>
- T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
- if (ZB == ZB_Max && Val == 0)
- return std::numeric_limits<T>::max();
- return countTrailingZeros(Val, ZB_Undefined);
- }
- /// Create a bitmask with the N right-most bits set to 1, and all other
- /// bits set to 0. Only unsigned types are allowed.
- template <typename T>
- T maskTrailingOnes(unsigned N) {
- static_assert(std::is_unsigned<T>::value, "Invalid type!");
- const unsigned Bits = CHAR_BIT * sizeof(T);
- assert(N <= Bits && "Invalid bit index");
- return N == 0 ? 0 : (T(-1) >> (Bits - N));
- }
- /// Create a bitmask with the N left-most bits set to 1, and all other
- /// bits set to 0. Only unsigned types are allowed.
- template <typename T>
- T maskLeadingOnes(unsigned N) {
- return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
- }
- /// Create a bitmask with the N right-most bits set to 0, and all other
- /// bits set to 1. Only unsigned types are allowed.
- template <typename T>
- T maskTrailingZeros(unsigned N) {
- return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
- }
- /// Create a bitmask with the N left-most bits set to 0, and all other
- /// bits set to 1. Only unsigned types are allowed.
- template <typename T>
- T maskLeadingZeros(unsigned N) {
- return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
- }
- /// Get the index of the last set bit starting from the least
- /// significant bit.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
- /// valid arguments.
- template <typename T>
- T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
- if (ZB == ZB_Max && Val == 0)
- return std::numeric_limits<T>::max();
- // Use ^ instead of - because both gcc and llvm can remove the associated ^
- // in the __builtin_clz intrinsic on x86.
- return countLeadingZeros(Val, ZB_Undefined) ^
- (std::numeric_limits<T>::digits - 1);
- }
- /// Macro compressed bit reversal table for 256 bits.
- ///
- /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
- static const unsigned char BitReverseTable256[256] = {
- #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
- #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
- #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
- R6(0),
- R6(2),
- R6(1),
- R6(3)
- #undef R2
- #undef R4
- #undef R6
- };
- /// Reverse the bits in \p Val.
- template <typename T>
- T reverseBits(T Val) {
- unsigned char in[sizeof(Val)];
- unsigned char out[sizeof(Val)];
- std::memcpy(in, &Val, sizeof(Val));
- for (unsigned i = 0; i < sizeof(Val); ++i)
- out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
- std::memcpy(&Val, out, sizeof(Val));
- return Val;
- }
- // NOTE: The following support functions use the _32/_64 extensions instead of
- // type overloading so that signed and unsigned integers can be used without
- // ambiguity.
- /// Return the high 32 bits of a 64 bit value.
- constexpr inline uint32_t Hi_32(uint64_t Value) {
- return static_cast<uint32_t>(Value >> 32);
- }
- /// Return the low 32 bits of a 64 bit value.
- constexpr inline uint32_t Lo_32(uint64_t Value) {
- return static_cast<uint32_t>(Value);
- }
- /// Make a 64-bit integer from a high / low pair of 32-bit integers.
- constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
- return ((uint64_t)High << 32) | (uint64_t)Low;
- }
- /// Checks if an integer fits into the given bit width.
- template <unsigned N>
- constexpr inline bool isInt(int64_t x) {
- return N >= 64 ||
- (-(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)));
- }
- // Template specializations to get better code for common cases.
- template <>
- constexpr inline bool isInt<8>(int64_t x) {
- return static_cast<int8_t>(x) == x;
- }
- template <>
- constexpr inline bool isInt<16>(int64_t x) {
- return static_cast<int16_t>(x) == x;
- }
- template <>
- constexpr inline bool isInt<32>(int64_t x) {
- return static_cast<int32_t>(x) == x;
- }
- /// Checks if a signed integer is an N bit number shifted left by S.
- template <unsigned N, unsigned S>
- constexpr inline bool isShiftedInt(int64_t x) {
- static_assert(
- N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
- static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
- return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
- }
- /// Checks if an unsigned integer fits into the given bit width.
- ///
- /// This is written as two functions rather than as simply
- ///
- /// return N >= 64 || X < (UINT64_C(1) << N);
- ///
- /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
- /// left too many places.
- template <unsigned N>
- constexpr inline typename std::enable_if<(N < 64), bool>::type isUInt(
- uint64_t X) {
- static_assert(N > 0, "isUInt<0> doesn't make sense");
- return X < (UINT64_C(1) << (N));
- }
- template <unsigned N>
- constexpr inline typename std::enable_if<N >= 64, bool>::type isUInt(
- uint64_t /*X*/) {
- return true;
- }
- // Template specializations to get better code for common cases.
- template <>
- constexpr inline bool isUInt<8>(uint64_t x) {
- return static_cast<uint8_t>(x) == x;
- }
- template <>
- constexpr inline bool isUInt<16>(uint64_t x) {
- return static_cast<uint16_t>(x) == x;
- }
- template <>
- constexpr inline bool isUInt<32>(uint64_t x) {
- return static_cast<uint32_t>(x) == x;
- }
- /// Checks if a unsigned integer is an N bit number shifted left by S.
- template <unsigned N, unsigned S>
- constexpr inline bool isShiftedUInt(uint64_t x) {
- static_assert(
- N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
- static_assert(
- N + S <= 64, "isShiftedUInt<N, S> with N + S > 64 is too wide.");
- // Per the two static_asserts above, S must be strictly less than 64. So
- // 1 << S is not undefined behavior.
- return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
- }
- /// Gets the maximum value for a N-bit unsigned integer.
- inline uint64_t maxUIntN(uint64_t N) {
- assert(N > 0 && N <= 64 && "integer width out of range");
- // uint64_t(1) << 64 is undefined behavior, so we can't do
- // (uint64_t(1) << N) - 1
- // without checking first that N != 64. But this works and doesn't have a
- // branch.
- return UINT64_MAX >> (64 - N);
- }
- // Ignore the false warning "Arithmetic overflow" for MSVC
- #ifdef _MSC_VER
- #pragma warning(push)
- #pragma warning(disable : 4146)
- #endif
- /// Gets the minimum value for a N-bit signed integer.
- inline int64_t minIntN(int64_t N) {
- assert(N > 0 && N <= 64 && "integer width out of range");
- return -(UINT64_C(1) << (N - 1));
- }
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- /// Gets the maximum value for a N-bit signed integer.
- inline int64_t maxIntN(int64_t N) {
- assert(N > 0 && N <= 64 && "integer width out of range");
- // This relies on two's complement wraparound when N == 64, so we convert to
- // int64_t only at the very end to avoid UB.
- return (UINT64_C(1) << (N - 1)) - 1;
- }
- /// Checks if an unsigned integer fits into the given (dynamic) bit width.
- inline bool isUIntN(unsigned N, uint64_t x) {
- return N >= 64 || x <= maxUIntN(N);
- }
- /// Checks if an signed integer fits into the given (dynamic) bit width.
- inline bool isIntN(unsigned N, int64_t x) {
- return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
- }
- /// Return true if the argument is a non-empty sequence of ones starting at the
- /// least significant bit with the remainder zero (32 bit version).
- /// Ex. isMask_32(0x0000FFFFU) == true.
- constexpr inline bool isMask_32(uint32_t Value) {
- return Value && ((Value + 1) & Value) == 0;
- }
- /// Return true if the argument is a non-empty sequence of ones starting at the
- /// least significant bit with the remainder zero (64 bit version).
- constexpr inline bool isMask_64(uint64_t Value) {
- return Value && ((Value + 1) & Value) == 0;
- }
- /// Return true if the argument contains a non-empty sequence of ones with the
- /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
- constexpr inline bool isShiftedMask_32(uint32_t Value) {
- return Value && isMask_32((Value - 1) | Value);
- }
- /// Return true if the argument contains a non-empty sequence of ones with the
- /// remainder zero (64 bit version.)
- constexpr inline bool isShiftedMask_64(uint64_t Value) {
- return Value && isMask_64((Value - 1) | Value);
- }
- /// Return true if the argument is a power of two > 0.
- /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
- constexpr inline bool isPowerOf2_32(uint32_t Value) {
- return Value && !(Value & (Value - 1));
- }
- /// Return true if the argument is a power of two > 0 (64 bit edition.)
- constexpr inline bool isPowerOf2_64(uint64_t Value) {
- return Value && !(Value & (Value - 1));
- }
- /// Count the number of ones from the most significant bit to the first
- /// zero bit.
- ///
- /// Ex. countLeadingOnes(0xFF0FFF00) == 8.
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of all ones. Only ZB_Width and
- /// ZB_Undefined are valid arguments.
- template <typename T>
- std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
- static_assert(
- std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return countLeadingZeros<T>(~Value, ZB);
- }
- /// Count the number of ones from the least significant bit to the first
- /// zero bit.
- ///
- /// Ex. countTrailingOnes(0x00FF00FF) == 8.
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of all ones. Only ZB_Width and
- /// ZB_Undefined are valid arguments.
- template <typename T>
- std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
- static_assert(
- std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return countTrailingZeros<T>(~Value, ZB);
- }
- namespace detail {
- template <typename T, std::size_t SizeOfT>
- struct PopulationCounter {
- static unsigned count(T Value) {
- // Generic version, forward to 32 bits.
- static_assert(SizeOfT <= 4, "Not implemented!");
- #if defined(__GNUC__) && __GNUC__ >= 4
- return __builtin_popcount(Value);
- #else
- uint32_t v = Value;
- v = v - ((v >> 1) & 0x55555555);
- v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
- return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
- #endif
- }
- };
- template <typename T>
- struct PopulationCounter<T, 8> {
- static unsigned count(T Value) {
- #if defined(__GNUC__) && __GNUC__ >= 4
- return __builtin_popcountll(Value);
- #else
- uint64_t v = Value;
- v = v - ((v >> 1) & 0x5555555555555555ULL);
- v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
- v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
- return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
- #endif
- }
- };
- } // namespace detail
- /// Count the number of set bits in a value.
- /// Ex. countPopulation(0xF000F000) = 8
- /// Returns 0 if the word is zero.
- template <typename T>
- inline unsigned countPopulation(T Value) {
- static_assert(
- std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return detail::PopulationCounter<T, sizeof(T)>::count(Value);
- }
- /// Return the log base 2 of the specified value.
- inline double Log2(double Value) {
- #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
- return __builtin_log(Value) / __builtin_log(2.0);
- #else
- return log2(Value);
- #endif
- }
- /// Return the floor log base 2 of the specified value, -1 if the value is zero.
- /// (32 bit edition.)
- /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
- inline unsigned Log2_32(uint32_t Value) {
- return static_cast<unsigned>(31 - countLeadingZeros(Value));
- }
- /// Return the floor log base 2 of the specified value, -1 if the value is zero.
- /// (64 bit edition.)
- inline unsigned Log2_64(uint64_t Value) {
- return static_cast<unsigned>(63 - countLeadingZeros(Value));
- }
- /// Return the ceil log base 2 of the specified value, 32 if the value is zero.
- /// (32 bit edition).
- /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
- inline unsigned Log2_32_Ceil(uint32_t Value) {
- return static_cast<unsigned>(32 - countLeadingZeros(Value - 1));
- }
- /// Return the ceil log base 2 of the specified value, 64 if the value is zero.
- /// (64 bit edition.)
- inline unsigned Log2_64_Ceil(uint64_t Value) {
- return static_cast<unsigned>(64 - countLeadingZeros(Value - 1));
- }
- /// Return the greatest common divisor of the values using Euclid's algorithm.
- inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
- while (B) {
- uint64_t T = B;
- B = A % B;
- A = T;
- }
- return A;
- }
- /// This function takes a 64-bit integer and returns the bit equivalent double.
- inline double BitsToDouble(uint64_t Bits) {
- double D;
- static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
- memcpy(&D, &Bits, sizeof(Bits));
- return D;
- }
- /// This function takes a 32-bit integer and returns the bit equivalent float.
- inline float BitsToFloat(uint32_t Bits) {
- // TODO: Use bit_cast once C++20 becomes available.
- float F;
- static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
- memcpy(&F, &Bits, sizeof(Bits));
- return F;
- }
- /// This function takes a double and returns the bit equivalent 64-bit integer.
- /// Note that copying doubles around changes the bits of NaNs on some hosts,
- /// notably x86, so this routine cannot be used if these bits are needed.
- inline uint64_t DoubleToBits(double Double) {
- uint64_t Bits;
- static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
- memcpy(&Bits, &Double, sizeof(Double));
- return Bits;
- }
- /// This function takes a float and returns the bit equivalent 32-bit integer.
- /// Note that copying floats around changes the bits of NaNs on some hosts,
- /// notably x86, so this routine cannot be used if these bits are needed.
- inline uint32_t FloatToBits(float Float) {
- uint32_t Bits;
- static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
- memcpy(&Bits, &Float, sizeof(Float));
- return Bits;
- }
- /// A and B are either alignments or offsets. Return the minimum alignment that
- /// may be assumed after adding the two together.
- constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
- // The largest power of 2 that divides both A and B.
- //
- // Replace "-Value" by "1+~Value" in the following commented code to avoid
- // MSVC warning C4146
- // return (A | B) & -(A | B);
- return (A | B) & (1 + ~(A | B));
- }
- /// Aligns \c Addr to \c Alignment bytes, rounding up.
- ///
- /// Alignment should be a power of two. This method rounds up, so
- /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
- inline uintptr_t alignAddr(const void* Addr, size_t Alignment) {
- assert(
- Alignment && isPowerOf2_64((uint64_t)Alignment) &&
- "Alignment is not a power of two!");
- assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
- return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
- }
- /// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
- /// bytes, rounding up.
- inline size_t alignmentAdjustment(const void* Ptr, size_t Alignment) {
- return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
- }
- /// Returns the next power of two (in 64-bits) that is strictly greater than A.
- /// Returns zero on overflow.
- inline uint64_t NextPowerOf2(uint64_t A) {
- A |= (A >> 1);
- A |= (A >> 2);
- A |= (A >> 4);
- A |= (A >> 8);
- A |= (A >> 16);
- A |= (A >> 32);
- return A + 1;
- }
- /// Returns the power of two which is less than or equal to the given value.
- /// Essentially, it is a floor operation across the domain of powers of two.
- inline uint64_t PowerOf2Floor(uint64_t A) {
- if (!A)
- return 0;
- return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
- }
- /// Returns the power of two which is greater than or equal to the given value.
- /// Essentially, it is a ceil operation across the domain of powers of two.
- inline uint64_t PowerOf2Ceil(uint64_t A) {
- if (!A)
- return 0;
- return NextPowerOf2(A - 1);
- }
- /// Returns the next integer (mod 2**64) that is greater than or equal to
- /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
- ///
- /// If non-zero \p Skew is specified, the return value will be a minimal
- /// integer that is greater than or equal to \p Value and equal to
- /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
- /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
- ///
- /// Examples:
- /// \code
- /// alignTo(5, 8) = 8
- /// alignTo(17, 8) = 24
- /// alignTo(~0LL, 8) = 0
- /// alignTo(321, 255) = 510
- ///
- /// alignTo(5, 8, 7) = 7
- /// alignTo(17, 8, 1) = 17
- /// alignTo(~0LL, 8, 3) = 3
- /// alignTo(321, 255, 42) = 552
- /// \endcode
- inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
- assert(Align != 0u && "Align can't be 0.");
- Skew %= Align;
- return (Value + Align - 1 - Skew) / Align * Align + Skew;
- }
- /// Returns the next integer (mod 2**64) that is greater than or equal to
- /// \p Value and is a multiple of \c Align. \c Align must be non-zero.
- template <uint64_t Align>
- constexpr inline uint64_t alignTo(uint64_t Value) {
- static_assert(Align != 0u, "Align must be non-zero");
- return (Value + Align - 1) / Align * Align;
- }
- /// Returns the integer ceil(Numerator / Denominator).
- inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
- return alignTo(Numerator, Denominator) / Denominator;
- }
- /// \c alignTo for contexts where a constant expression is required.
- /// \sa alignTo
- ///
- /// \todo FIXME: remove when \c constexpr becomes really \c constexpr
- template <uint64_t Align>
- struct AlignTo {
- static_assert(Align != 0u, "Align must be non-zero");
- template <uint64_t Value>
- struct from_value {
- static const uint64_t value = (Value + Align - 1) / Align * Align;
- };
- };
- /// Returns the largest uint64_t less than or equal to \p Value and is
- /// \p Skew mod \p Align. \p Align must be non-zero
- inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
- assert(Align != 0u && "Align can't be 0.");
- Skew %= Align;
- return (Value - Skew) / Align * Align + Skew;
- }
- /// Returns the offset to the next integer (mod 2**64) that is greater than
- /// or equal to \p Value and is a multiple of \p Align. \p Align must be
- /// non-zero.
- inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
- return alignTo(Value, Align) - Value;
- }
- /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
- /// Requires 0 < B <= 32.
- template <unsigned B>
- constexpr inline int32_t SignExtend32(uint32_t X) {
- static_assert(B > 0, "Bit width can't be 0.");
- static_assert(B <= 32, "Bit width out of range.");
- return int32_t(X << (32 - B)) >> (32 - B);
- }
- /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
- /// Requires 0 < B < 32.
- inline int32_t SignExtend32(uint32_t X, unsigned B) {
- assert(B > 0 && "Bit width can't be 0.");
- assert(B <= 32 && "Bit width out of range.");
- return int32_t(X << (32 - B)) >> (32 - B);
- }
- /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
- /// Requires 0 < B < 64.
- template <unsigned B>
- constexpr inline int64_t SignExtend64(uint64_t x) {
- static_assert(B > 0, "Bit width can't be 0.");
- static_assert(B <= 64, "Bit width out of range.");
- return int64_t(x << (64 - B)) >> (64 - B);
- }
- /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
- /// Requires 0 < B < 64.
- inline int64_t SignExtend64(uint64_t X, unsigned B) {
- assert(B > 0 && "Bit width can't be 0.");
- assert(B <= 64 && "Bit width out of range.");
- return int64_t(X << (64 - B)) >> (64 - B);
- }
- /// Subtract two unsigned integers, X and Y, of type T and return the absolute
- /// value of the result.
- template <typename T>
- typename std::enable_if<std::is_unsigned<T>::value, T>::type AbsoluteDifference(
- T X,
- T Y) {
- return std::max(X, Y) - std::min(X, Y);
- }
- /// Add two unsigned integers, X and Y, of type T. Clamp the result to the
- /// maximum representable value of T on overflow. ResultOverflowed indicates if
- /// the result is larger than the maximum representable value of type T.
- template <typename T>
- typename std::enable_if<std::is_unsigned<T>::value, T>::type SaturatingAdd(
- T X,
- T Y,
- bool* ResultOverflowed = nullptr) {
- bool Dummy;
- bool& Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
- // Hacker's Delight, p. 29
- T Z = X + Y;
- Overflowed = (Z < X || Z < Y);
- if (Overflowed)
- return std::numeric_limits<T>::max();
- else
- return Z;
- }
- /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
- /// maximum representable value of T on overflow. ResultOverflowed indicates if
- /// the result is larger than the maximum representable value of type T.
- template <typename T>
- typename std::enable_if<std::is_unsigned<T>::value, T>::type SaturatingMultiply(
- T X,
- T Y,
- bool* ResultOverflowed = nullptr) {
- bool Dummy;
- bool& Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
- // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
- // because it fails for uint16_t (where multiplication can have undefined
- // behavior due to promotion to int), and requires a division in addition
- // to the multiplication.
- Overflowed = false;
- // Log2(Z) would be either Log2Z or Log2Z + 1.
- // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
- // will necessarily be less than Log2Max as desired.
- int Log2Z = Log2_64(X) + Log2_64(Y);
- const T Max = std::numeric_limits<T>::max();
- int Log2Max = Log2_64(Max);
- if (Log2Z < Log2Max) {
- return X * Y;
- }
- if (Log2Z > Log2Max) {
- Overflowed = true;
- return Max;
- }
- // We're going to use the top bit, and maybe overflow one
- // bit past it. Multiply all but the bottom bit then add
- // that on at the end.
- T Z = (X >> 1) * Y;
- if (Z & ~(Max >> 1)) {
- Overflowed = true;
- return Max;
- }
- Z <<= 1;
- if (X & 1)
- return SaturatingAdd(Z, Y, ResultOverflowed);
- return Z;
- }
- /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
- /// the product. Clamp the result to the maximum representable value of T on
- /// overflow. ResultOverflowed indicates if the result is larger than the
- /// maximum representable value of type T.
- template <typename T>
- typename std::enable_if<std::is_unsigned<T>::value, T>::type
- SaturatingMultiplyAdd(T X, T Y, T A, bool* ResultOverflowed = nullptr) {
- bool Dummy;
- bool& Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
- T Product = SaturatingMultiply(X, Y, &Overflowed);
- if (Overflowed)
- return Product;
- return SaturatingAdd(A, Product, &Overflowed);
- }
- /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
- extern const float huge_valf;
- } // namespace llvm
- } // namespace c10
|