123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- #pragma once
- #include <ATen/native/cpu/Loops.h>
- #include <ATen/Parallel.h>
- #include <c10/util/TypeList.h>
- #include <c10/core/Scalar.h>
- #include <c10/util/irange.h>
- #include <sstream>
- namespace at { namespace native { inline namespace CPU_CAPABILITY {
- using namespace vec;
- #define VEC_LOOP_HEADER(func_t, data) \
- using scalar_t = typename function_traits<func_t>::result_type; \
- using Vec = Vectorized<scalar_t>; \
- char* out_ptr = data[0]; \
- (void) out_ptr;
- template <typename traits>
- static inline bool is_contiguous_reduction(const int64_t* strides) {
- return strides[0] == 0 &&
- strides[1] == sizeof(typename traits::arg2_t);
- }
- template <typename traits>
- static inline bool is_outer_reduction(const int64_t* strides) {
- return strides[0] == 0 &&
- strides[2] == sizeof(typename traits::result_type) &&
- strides[3] == sizeof(typename traits::arg2_t);
- }
- template <typename func_t, typename vec_func_t>
- static inline void vectorized_reduction(char** data, int64_t n, int64_t stride,
- func_t op, vec_func_t vop, bool reduce) {
- VEC_LOOP_HEADER(func_t, data)
- const char* in1_ptr = data[1];
- Vec acc[4];
- for (const auto j : c10::irange(4)) {
- acc[j] = Vec::loadu(in1_ptr + j * Vec::size() * sizeof(scalar_t));
- }
- for (const auto i : c10::irange(1, n)) {
- const char* ptr = in1_ptr + stride * i;
- acc[0] = vop(acc[0], Vec::loadu(ptr + (0 * Vec::size() * sizeof(scalar_t))));
- acc[1] = vop(acc[1], Vec::loadu(ptr + (1 * Vec::size() * sizeof(scalar_t))));
- acc[2] = vop(acc[2], Vec::loadu(ptr + (2 * Vec::size() * sizeof(scalar_t))));
- acc[3] = vop(acc[3], Vec::loadu(ptr + (3 * Vec::size() * sizeof(scalar_t))));
- }
- if (reduce) {
- scalar_t buffer[Vec::size()];
- acc[0] = vop(vop(acc[0], acc[1]), vop(acc[2], acc[3]));
- acc[0].store(buffer);
- for (const auto j : c10::irange(1, Vec::size())) {
- buffer[0] = op(buffer[0], buffer[j]);
- }
- auto dst = (scalar_t*)out_ptr;
- *dst = op(*dst, buffer[0]);
- } else {
- for (const auto j : c10::irange(4)) {
- auto dst = out_ptr + j * Vec::size() * sizeof(scalar_t);
- acc[j] = vop(acc[j], Vec::loadu(dst));
- acc[j].store(dst);
- }
- }
- }
- template <typename F>
- static inline void UNARY_OUTER_LOOP(char* data[2], const int64_t strides[2], int64_t n, F f) {
- for (const auto j C10_UNUSED : c10::irange(n)) {
- f();
- data[0] += strides[0];
- data[1] += strides[1];
- }
- }
- template <typename func_t, typename vec_func_t>
- static inline void vectorized_inner_reduction(char** data, int64_t n, func_t op, vec_func_t vop) {
- VEC_LOOP_HEADER(func_t, data)
- int64_t vector_stride = 4 * Vec::size() * sizeof(scalar_t);
- int64_t count = n / (4 * Vec::size());
- if (count > 0) {
- vectorized_reduction(data, count, vector_stride, op, vop, true);
- }
- char* ptrs[3] = { data[0], data[0], data[1] };
- int64_t strides[] = { 0, 0, sizeof(scalar_t) };
- basic_loop(ptrs, strides, count * 4 * Vec::size(), n, op);
- }
- template <typename func_t, typename vec_func_t>
- static inline void vectorized_outer_reduction(char** data, int64_t inner_stride, int64_t size0, int64_t size1, func_t op, vec_func_t vop) {
- VEC_LOOP_HEADER(func_t, data)
-
- #if defined(CPU_CAPABILITY_AVX512)
- int64_t outer_stride[2] = { 256, 256 };
- #else
- int64_t outer_stride[2] = { 128, 128 };
- #endif
- UNARY_OUTER_LOOP(data, outer_stride, size1 / (4 * Vec::size()), [&] {
- vectorized_reduction(data, size0, inner_stride, op, vop, false);
- });
-
- int64_t step[] = { sizeof(scalar_t), sizeof(scalar_t) };
- int64_t remaining = size1 % (4 * Vec::size());
- UNARY_OUTER_LOOP(data, step, remaining, [&] {
- char* ptrs[3] = { data[0], data[0], data[1] };
- int64_t strides[] = { 0, 0, inner_stride };
- basic_loop(ptrs, strides, 0, size0, op);
- });
- }
- template<typename traits, typename res_t>
- static void set_result(const int index, const res_t result, const TensorIteratorBase &iter, const int num_outputs) {
-
- if (index < num_outputs) {
- char *out = (char *) iter.data_ptr(index);
- *(res_t *) out = result;
- }
- }
- template<typename traits, typename res_t>
- static void set_results(const res_t result, const TensorIteratorBase &iter, const int num_outputs) {
- AT_ASSERT(num_outputs == 1);
- set_result<traits>(0, result, iter, num_outputs);
- }
- template<typename traits, std::size_t i = 0, typename... tuple_t>
- static inline typename std::enable_if<i == sizeof...(tuple_t), std::size_t>::type
- for_each_in_tuple(const std::tuple<tuple_t...>& , const TensorIteratorBase& , const int ) {
- return i;
- }
- template<typename traits, std::size_t i = 0, typename... tuple_t>
- static inline typename std::enable_if<i < sizeof...(tuple_t), std::size_t>::type
- for_each_in_tuple(const std::tuple<tuple_t...>& t, const TensorIteratorBase &iter, const int num_outputs) {
- if (i < (size_t)num_outputs) {
- set_result<traits>(i, std::get<i>(t), iter, num_outputs);
- return for_each_in_tuple<traits, i + 1, tuple_t...>(t, iter, num_outputs);
- }
- return i;
- }
- template<typename traits, typename... res_t>
- static void set_results(const std::tuple<res_t...>& result, const TensorIteratorBase &iter, const int num_outputs) {
- AT_ASSERT(num_outputs >= 1);
- std::size_t result_size = for_each_in_tuple<traits>(result, iter, num_outputs);
- AT_ASSERT((size_t)num_outputs == result_size);
- }
- template <typename T, typename... Args>
- struct all_same : guts::conjunction<
- std::is_same<T, Args>...
- > {};
- template <typename ops_t, typename init_t>
- void binary_kernel_reduce(TensorIteratorBase& iter, ops_t ops, init_t init) {
- using rf_t = decltype(&ops_t::reduce);
- using cf_t = decltype(&ops_t::combine);
- using pf_t = decltype(&ops_t::project);
- using r_traits = binary_function_traits<rf_t>;
- using c_traits = binary_function_traits<cf_t>;
- using p_traits = unary_function_traits<pf_t>;
- using acc_t = typename p_traits::arg1_t;
- using data_t = typename r_traits::arg2_t;
- static_assert(
- all_same<
- acc_t,
- init_t,
- typename r_traits::arg1_t,
- typename r_traits::result_type,
- typename c_traits::arg1_t,
- typename c_traits::arg2_t,
- typename c_traits::result_type>::value,
- "all accumulate types must match");
- static_assert(
- std::is_default_constructible<acc_t>::value,
- "the accumulate type must be default-constructible"
- );
- const int num_outputs = iter.noutputs();
- iter.foreach_reduced_elt([&ops, &init, num_outputs](TensorIteratorBase &sub_iter) {
- auto reduction_body = [&ops, &sub_iter, num_outputs](acc_t acc, int64_t begin, int64_t end) -> acc_t {
- int ntensors = sub_iter.ntensors();
- sub_iter.serial_for_each([&acc, &ops, num_outputs, ntensors, begin](char** data, const int64_t* strides, int64_t size) {
- AT_ASSERT(ntensors - num_outputs == 1);
- char *in = data[ntensors - 1];
- int64_t stride = strides[ntensors - 1];
- for (const auto i : c10::irange(size)) {
- acc = ops.reduce(acc, c10::load<data_t>(in), begin + i);
- in += stride;
- }
- }, {begin, end});
- return ops.translate_idx(acc, sub_iter.view_offsets()[0]);
- };
- acc_t total_acc = init;
- auto numel = sub_iter.numel();
- if (numel < at::internal::GRAIN_SIZE || at::get_num_threads() == 1 ||
- at::in_parallel_region()) {
- total_acc = reduction_body(total_acc, 0, numel);
- } else {
- int max_threads = at::get_num_threads();
- AT_ASSERT(max_threads > 0);
- static_assert(
- !std::is_same<acc_t, bool>::value,
- "Concurrently modifying different references into std::vector<bool> is UB."
- );
- std::vector<acc_t> buffer((unsigned)max_threads, init);
- at::parallel_for(0, numel, internal::GRAIN_SIZE,
- [&](int64_t begin, int64_t end) {
- auto& acc = buffer[at::get_thread_num()];
- acc = reduction_body(acc, begin, end);
- }
- );
- for (const auto i : c10::irange(max_threads)) {
- total_acc = ops.combine(total_acc, buffer[i]);
- }
- }
- set_results<r_traits>(ops.project(total_acc), sub_iter, num_outputs);
- });
- }
- template <typename func_t, typename vec_func_t>
- void binary_kernel_reduce_vec(TensorIteratorBase& iter, func_t op, vec_func_t vop, double ident = 0) {
- using traits = binary_function_traits<func_t>;
- static_assert(
- all_same<
- typename traits::result_type,
- typename traits::arg1_t,
- typename traits::arg2_t>::value,
- "all types must match");
- iter.output_base().fill_(ident);
- iter.parallel_reduce([&](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
- int64_t outer_strides[] = { strides[2], strides[3] };
- if (is_contiguous_reduction<traits>(strides)) {
-
- UNARY_OUTER_LOOP(data, outer_strides, size1, [&] {
- vectorized_inner_reduction(data, size0, op, vop);
- });
- } else if (is_outer_reduction<traits>(strides)) {
-
- int64_t inner_stride = strides[1];
- vectorized_outer_reduction(data, inner_stride, size0, size1, op, vop);
- } else {
- UNARY_OUTER_LOOP(data, outer_strides, size1, [&] {
- char* ptrs[3] = { data[0], data[0], data[1] };
- int64_t inner_strides[3] = { strides[0], strides[0], strides[1] };
- basic_loop(ptrs, inner_strides, 0, size0, op);
- });
- }
- });
- }
- static inline bool is_reduce_lastdim(TensorIteratorBase& iter) {
- return iter.num_reduce_dims() == 1 && iter.is_dim_reduced(0)
- && iter.ninputs() == 1 && iter.strides(1)[0] == iter.element_size(1);
- }
- template <typename reduce_func_t>
- void binary_kernel_reduce_lastdim(TensorIteratorBase& iter, reduce_func_t reduce_op) {
- auto shape = iter.shape();
- int64_t dim_size = shape[0];
- int64_t grain_size = std::max((int64_t) 1, at::internal::GRAIN_SIZE / dim_size);
- TensorIterator sub_iter(iter);
-
- sub_iter.narrow(0, 0, 1);
- auto loop = [&](char** data, const int64_t* strides, int64_t size) {
- char* out = data[0];
- char* in = data[1];
- for (int64_t i = 0; i < size; ++i) {
- reduce_op(out, in, dim_size);
- out += strides[0];
- in += strides[1];
- }
- };
- sub_iter.for_each(loop, grain_size);
- }
- }}}
|