123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- // Copyright (c) Facebook, Inc. and its affiliates.
- // All rights reserved.
- //
- // This source code is licensed under the BSD-style license found in the
- // LICENSE file in the root directory of this source tree.
- #pragma once
- #include <bitset>
- #include <utility>
- #include <ATen/ArrayRef.h>
- #include <ATen/SmallVector.h>
- #include <ATen/Tensor.h>
- namespace at {
- namespace functorch {
- using Tensor = at::Tensor;
- // We assume this in a few other places in the codebase,
- // but there isn't a centralized definition.
- constexpr int64_t kVmapMaxTensorDims = 64;
- // The valid vmap levels range from [0, 64). This effectively means that we
- // support a maximum of 64 nested vmaps.
- constexpr int64_t kVmapNumLevels = 64;
- // Store this number of elements of BatchDims on the stack. Most people will
- // probably use <= 5 nested vmaps, but adjust this number as necessary.
- constexpr int64_t kBatchDimsStackSize = 5;
- // A BatchedTensorImpl holds an underlying Tensor and a single batch dim
- // NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
- // BatchedTensorImpl.
- //
- // The batch dimensions are treated as being "private"; they are not user-visible.
- // For example, in the following Tensor,
- // bt = BatchedTensorImpl(ones(2, 3, 5, 7), lvl=1, dim=0)
- // dimension 0 is batch dimension.
- //
- // bt.sizes() returns (5, 7); bt.sum(0) performs a reduction over the (public)
- // dim 0, which is equivalent to dim 3 in the underlying ones(2, 3, 5, 7) tensor.
- struct TORCH_API BatchedTensorImpl : public c10::TensorImpl {
- explicit BatchedTensorImpl(at::DispatchKeySet key_set, Tensor value, int64_t dim, int64_t level);
- // Returns batch dimension of this tensor
- int64_t bdim() const { return bdim_; }
- // Returns batch dimension of this tensor
- int64_t level() const { return level_; }
- // BatchedTensorImpl wraps a Tensor
- const Tensor& value() const { return value_; }
- // Given a public dimension index, return the dimension index in the underlying
- // value() tensor.
- // For example, if we have
- // bt = BatchedTensorImpl(ones(2, 3, 5, 7), lvl=1, dim=0)
- // bt.actualDim(0) -> 1
- // bt.actualDim(1) -> 2
- // bt.actualDim(2) -> 3
- // bt.actualDim(3) -> Error
- int64_t actualDim(int64_t dim, bool wrap_dim = true) const;
- // We have to override this because we opted into CustomStrides
- IntArrayRef strides_custom() const override;
- SymIntArrayRef sym_strides_custom() const override;
- // Override a bunch of methods inherited from TensorImpl to return error messages.
- bool is_contiguous_custom(at::MemoryFormat memory_format=at::MemoryFormat::Contiguous) const override;
- void set_size(int64_t dim, int64_t new_size) override;
- void set_stride(int64_t dim, int64_t new_stride) override;
- void set_storage_offset(int64_t storage_offset) override;
- #ifdef DEBUG
- bool has_storage() const override;
- #endif
- void refreshTensorMetadata();
- // Used in torchdim. torchdim uses non-lexical BatchedTensor; the way it
- // accomplishes this is a hack where it is able to modify the levels of
- // BatchedTensor to match the level of the current vmap transform.
- void _unsafe_set_level(int64_t level) {
- level_ = level;
- }
- // Used in batching rule for in-place view operations that can change
- // the index of the bdim (think squeeze_, unsqueeze_)
- void unsafe_set_bdim(int64_t bdim) {
- // NB: you MUST call refreshTensorMetadata after doing this.
- bdim_ = bdim;
- }
- private:
- // see NOTE: [BatchedTensorImpl levels invariant]
- void checkInvariants() const;
- const char* tensorimpl_type_name() const override;
- Tensor value_;
- int64_t level_;
- int64_t bdim_;
- };
- // NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
- // BatchedTensorImpl.
- inline bool isBatchedTensor(const Tensor& tensor) {
- return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::FuncTorchBatched);
- }
- // It is unsafe to call this on a Tensor that is not backed by a
- // BatchedTensorImpl. Please use `maybeGetBatchedImpl` whenever possible.
- inline BatchedTensorImpl* unsafeGetBatchedImpl(Tensor tensor) {
- return static_cast<BatchedTensorImpl*>(tensor.unsafeGetTensorImpl());
- }
- inline BatchedTensorImpl* maybeGetBatchedImpl(Tensor tensor) {
- if (!isBatchedTensor(tensor)) {
- return nullptr;
- }
- return unsafeGetBatchedImpl(std::move(tensor));
- }
- // Returns a bitset. If bit i is set, then that means dim i is a batchdim.
- inline std::bitset<kVmapMaxTensorDims> createBatchDimBitset(int64_t dim) {
- std::bitset<kVmapMaxTensorDims> is_bdim;
- is_bdim.set(dim);
- return is_bdim;
- }
- // Creates a bitset for the given level
- inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(int64_t level) {
- std::bitset<kVmapNumLevels> result;
- result.set(level);
- return result;
- }
- // Use this to construct a BatchedTensor from a regular Tensor
- TORCH_API Tensor makeBatched(const Tensor& tensor, int64_t dim, int64_t level);
- // Adds a batch dim to `tensor`, returning a BatchedTensor
- TORCH_API Tensor addBatchDim(const Tensor& tensor, int64_t dim, int64_t level);
- // Certain dispatch keys must be propagated to the BatchedTensor (or, in general,
- // any wrapper Tensor subclasses). This is because there are methods on Tensor
- // that skip dispatch and check for the presence of a dispatch key (e.g. is_cpu()).
- // TODO: should probably contain more (or all?) backend keys
- constexpr DispatchKeySet kKeysToPropagateToWrapper({
- DispatchKey::Negative,
- DispatchKey::Conjugate,
- DispatchKey::XLA,
- DispatchKey::CUDA,
- DispatchKey::CPU,
- });
- inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) {
- auto key_set = tensor.unsafeGetTensorImpl()->key_set();
- return key_set & kKeysToPropagateToWrapper;
- }
- }
- }
|