123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477 |
- // Copyright (c) Facebook, Inc. and its affiliates.
- // All rights reserved.
- //
- // This source code is licensed under the BSD-style license found in the
- // LICENSE file in the root directory of this source tree.
- #pragma once
- #include <c10/util/TypeList.h>
- #include <ATen/ATen.h>
- #include <ATen/Operators.h>
- #include <ATen/functorch/DynamicLayer.h>
- #include <ATen/functorch/TensorWrapper.h>
- #include <ATen/functorch/BatchingMetaprogramming.h>
- #include <ATen/functorch/LegacyVmapTransforms.h>
- #include <ATen/functorch/BatchedFallback.h>
- #include <ATen/functorch/PlumbingHelper.h>
- #include <ATen/core/dispatch/Dispatcher.h>
- #include <ATen/VmapGeneratedPlumbing.h>
- #include <utility>
- // This file contains helper functions for batching rules.
- namespace at { namespace functorch {
- TORCH_API Tensor reshape_dim_into(int64_t src, int64_t dst, const Tensor& x);
- TORCH_API Tensor reshape_dim_outof(int64_t src, int64_t size1, const Tensor& x);
- TORCH_API Tensor reshape_dim_outof_symint(int64_t src, c10::SymInt size1, const Tensor& x);
- Tensor moveBatchDimToFront(const Tensor& tensor, optional<int64_t> maybe_batch_dim);
- int64_t rankWithoutBatchDim(const Tensor& tensor, optional<int64_t> maybe_batch_dim);
- int64_t numelWithoutBatchDim(const Tensor& tensor, optional<int64_t> maybe_batch_dim);
- optional<int64_t> valIfNonempty(optional<int64_t> maybe_empty, int64_t new_val);
- int64_t getPhysicalDim(const Tensor& tensor, bool has_batch_dim, int64_t logical_dim);
- VmapDimVector getPhysicalDims(const Tensor& tensor, bool has_batch_dim, IntArrayRef logical_dims);
- void vmapIncompatibleInplaceError(const char* schema_name);
- Tensor maybePadToLogicalRank(const Tensor& tensor, optional<int64_t> has_bdim, int64_t logical_rank);
- void check_randomness(RandomnessType randomness);
- void check_randomness(RandomnessType randomness, bool any_tensor_bdim);
- inline Tensor ensure_has_bdim(const Tensor& tensor, bool has_bdim, int64_t batch_size) {
- if (has_bdim) {
- return tensor;
- }
- const auto sizes = tensor.sizes();
- DimVector expanded_shape;
- expanded_shape.reserve(sizes.size());
- expanded_shape.emplace_back(batch_size);
- expanded_shape.insert(expanded_shape.end(), sizes.begin(), sizes.end());
- return tensor.expand(expanded_shape);
- }
- #define VMAP_SUPPORT(op, batch_rule) \
- m.impl(#op, op ## _generated_plumbing<decltype(&batch_rule), &batch_rule>);
- #define VMAP_SUPPORT2(op, overload, batch_rule) \
- m.impl(#op "." #overload, op ## _ ## overload ## _generated_plumbing<decltype(&batch_rule), &batch_rule>);
- #define OP_DECOMPOSE(op) m.impl(#op, static_cast<decltype(&ATEN_FN(op))>(native::op));
- #define OP_DECOMPOSE2(op, overload) m.impl(#op"."#overload, static_cast<decltype(&ATEN_FN2(op, overload))>(native::op));
- // DO NOT USE ME DIRECTLY! Use BASIC_UNARY_BATCH_RULE to save yourself some pain
- template <typename A, A a, typename C>
- struct BasicUnaryBatchRuleHelper;
- template <typename F, F Func, typename A, typename... T>
- struct BasicUnaryBatchRuleHelper<F, Func, c10::guts::typelist::typelist<A, T...>> {
- static std::tuple<Tensor,optional<int64_t>> apply(
- const Tensor& tensor,
- optional<int64_t> batch_dim,
- T... extra_args) {
- return std::make_tuple(Func(tensor, std::forward<T>(extra_args)...), batch_dim);
- }
- };
- // USAGE: BASIC_UNARY_BATCH_RULE(at::sin)
- // INCORRECT USAGE: BASIC_UNARY_BATCH_RULE(&at::sin)
- // It is important that this macro is not passed a function pointer!!
- #define BASIC_UNARY_BATCH_RULE(fn) SINGLE_ARG(\
- BasicUnaryBatchRuleHelper<\
- decltype(&fn),\
- &fn,\
- c10::guts::function_traits<decltype(fn)>::parameter_types>::apply)
- #define UNARY_POINTWISE(op) \
- VMAP_SUPPORT(op, BASIC_UNARY_BATCH_RULE(ATEN_FN(op)));
- template <typename A, A a, typename C>
- struct VariadicBdimsBatchRuleHelper;
- template <typename F, F Func, typename A, typename... T>
- struct VariadicBdimsBatchRuleHelper<F, Func, c10::guts::typelist::typelist<A, T...>> {
- static std::tuple<Tensor,optional<int64_t>> apply(
- const Tensor& tensor,
- optional<int64_t> batch_dim,
- T... extra_args) {
- auto tensor_ = moveBatchDimToFront(tensor, batch_dim);
- return std::make_tuple(Func(tensor_, std::forward<T>(extra_args)...), 0);
- }
- };
- // USAGE: VARIADIC_BDIMS_BATCH_RULE(at::cholesky_inverse)
- // INCORRECT USAGE: VARIADIC_BDIMS_BATCH_RULE(&at::cholesky_inverse)
- // It is important that this macro is not passed a function pointer!!
- #define VARIADIC_BDIMS_BATCH_RULE(fn) SINGLE_ARG(\
- VariadicBdimsBatchRuleHelper<\
- decltype(&fn),\
- &fn,\
- c10::guts::function_traits<decltype(fn)>::parameter_types>::apply)
- #define VARIADIC_BDIMS(op) \
- VMAP_SUPPORT(op, VARIADIC_BDIMS_BATCH_RULE(ATEN_FN(op)));
- #define VARIADIC_BDIMS2(op, overload) \
- VMAP_SUPPORT2(op, overload, VARIADIC_BDIMS_BATCH_RULE(ATEN_FN2(op, overload)));
- template<class F, F Func>
- void boxed_tensor_inputs_batch_rule(const c10::OperatorHandle& op, torch::jit::Stack* stack) {
- const auto& schema = op.schema();
- const auto num_returns = schema.returns().size();
- const auto num_arguments = schema.arguments().size();
- c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
- auto maybe_layer = maybeCurrentDynamicLayer();
- vmap_check_escaped(maybe_layer, "boxed_tensor_inputs_batch_rule");
- int64_t cur_level = maybe_layer->layerId();
- auto orig_arguments = torch::jit::last(*stack, num_arguments);
- if (std::none_of(orig_arguments.begin(), orig_arguments.end(), ivalueParticipatesInCurrentLevel)) {
- op.callBoxed(stack);
- return;
- }
- auto arguments = torch::jit::pop(*stack, num_arguments);
- std::vector<std::pair<Tensor, optional<int64_t>>> tensor_inputs;
- std::vector<int64_t> tensor_pos;
- for (const auto idx : c10::irange(0, num_arguments)) {
- const auto& ivalue = arguments[idx];
- if (ivalue.isTensor()) {
- Tensor tensor_value;
- optional<int64_t> tensor_bdim;
- std::tie(tensor_value, tensor_bdim) = unwrapTensorAtLevel(ivalue.toTensor(), cur_level);
- tensor_inputs.emplace_back(tensor_value, tensor_bdim);
- tensor_pos.push_back(idx);
- }
- }
- Func(tensor_inputs);
- size_t tensor_idx = 0;
- TORCH_INTERNAL_ASSERT(!tensor_pos.empty());
- for (const auto arg_idx : c10::irange(0, num_arguments)) {
- if (tensor_idx >= tensor_pos.size() || (int64_t)arg_idx != tensor_pos[tensor_idx]) {
- torch::jit::push(stack, arguments[arg_idx]);
- } else {
- TORCH_INTERNAL_ASSERT(tensor_idx < tensor_inputs.size());
- torch::jit::push(stack, tensor_inputs[tensor_idx].first);
- tensor_idx++;
- }
- }
- op.callBoxed(stack);
- const auto returns = torch::jit::pop(*stack, num_returns);
- for (const auto& ret : returns) {
- if (ret.isTensor()) {
- torch::jit::push(stack, makeBatched(ret.toTensor(), 0, cur_level));
- } else {
- TORCH_INTERNAL_ASSERT(false, "This boxed batching rule does not currently support ops that return non-tensor values");
- }
- }
- }
- inline void handle_pointwise_ops(std::vector<std::pair<Tensor, optional<int64_t>>> &tensor_inputs) {
- int64_t out_logical_rank = 0;
- for (auto& tensor_input : tensor_inputs) {
- int64_t cur_logical_rank = rankWithoutBatchDim(tensor_input.first, tensor_input.second);
- out_logical_rank = std::max(out_logical_rank, cur_logical_rank);
- }
- for (auto& tensor_input: tensor_inputs) {
- tensor_input.first = moveBatchDimToFront(tensor_input.first, tensor_input.second);
- tensor_input.first = maybePadToLogicalRank(tensor_input.first, tensor_input.second, out_logical_rank);
- }
- }
- #define POINTWISE_BOXED(op) \
- m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_tensor_inputs_batch_rule<decltype(&handle_pointwise_ops), &handle_pointwise_ops>>());
- #define POINTWISE_BOXED2(op, overload) \
- m.impl(#op "." #overload, torch::CppFunction::makeFromBoxedFunction<boxed_tensor_inputs_batch_rule<decltype(&handle_pointwise_ops), &handle_pointwise_ops>>());
- inline void handle_variadic_bdims(std::vector<std::pair<Tensor, optional<int64_t>>> &tensor_inputs) {
- for (auto & tensor_input : tensor_inputs) {
- tensor_input.first = moveBatchDimToFront(tensor_input.first, tensor_input.second);
- }
- }
- #define VARIADIC_BDIMS_BOXED(op) \
- m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_tensor_inputs_batch_rule<decltype(&handle_variadic_bdims), &handle_variadic_bdims>>());
- using UnpackedBatchedTensor = std::tuple<Tensor,optional<int64_t>>;
- inline void find_and_unpack_tensors(
- const torch::jit::Stack* stack,
- int64_t num_args,
- int64_t cur_level,
- SmallVector<UnpackedBatchedTensor, 5>* tensors,
- SmallVector<int64_t, 5>* tensors_pos,
- int64_t* batch_size) {
- int64_t computed_batch_size = -1;
- int64_t args_begin = stack->size() - num_args;
- for (const auto idx : c10::irange(0, num_args)) {
- const auto& ivalue = (*stack)[args_begin + idx];
- if (!ivalue.isTensor()) {
- continue;
- }
- auto unpacked = unwrapTensorAtLevel(ivalue.toTensor(), cur_level);
- const auto& tensor_value = std::get<0>(unpacked);
- const auto tensor_bdim = std::get<1>(unpacked);
- if (tensor_bdim.has_value()) {
- auto candidate_batch_size = tensor_value.size(*tensor_bdim);
- if (computed_batch_size == -1) {
- computed_batch_size = candidate_batch_size;
- }
- TORCH_INTERNAL_ASSERT(candidate_batch_size == computed_batch_size);
- }
- tensors->push_back(std::move(unpacked));
- tensors_pos->push_back(idx);
- }
- TORCH_INTERNAL_ASSERT(computed_batch_size > -1);
- *batch_size = computed_batch_size;
- }
- inline void boxed_existing_bdim_all_batch_rule(
- const c10::OperatorHandle& op, torch::jit::Stack* stack) {
- const auto& schema = op.schema();
- const auto num_returns = schema.returns().size();
- const auto num_arguments = schema.arguments().size();
- c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
- auto maybe_layer = maybeCurrentDynamicLayer();
- vmap_check_escaped(maybe_layer, "boxed_existing_bdim_all_batch_rule");
- int64_t cur_level = maybe_layer->layerId();
- const auto arguments = torch::jit::last(stack, num_arguments);
- if (std::none_of(arguments.begin(), arguments.end(), ivalueParticipatesInCurrentLevel)) {
- op.callBoxed(stack);
- return;
- }
- int64_t args_begin = stack->size() - num_arguments;
- SmallVector<UnpackedBatchedTensor, 5> tensor_inputs;
- SmallVector<int64_t, 5> tensor_pos;
- int64_t batch_size;
- find_and_unpack_tensors(
- stack, num_arguments, cur_level,
- &tensor_inputs, &tensor_pos, &batch_size);
- // for each tensor, ensure it has a bdim and reshape it.
- for (const auto tensor_idx : c10::irange(0, tensor_inputs.size())) {
- const auto& value = std::get<0>(tensor_inputs[tensor_idx]);
- auto bdim = std::get<1>(tensor_inputs[tensor_idx]);
- auto value_ = ensure_has_bdim(value, bdim.has_value(), batch_size);
- if (!bdim.has_value()) {
- bdim = 0;
- }
- (*stack)[args_begin + tensor_pos[tensor_idx]] = reshape_dim_into(*bdim, 0, value_);
- }
- op.callBoxed(stack);
- for (const auto idx : c10::irange(args_begin, args_begin + num_returns)) {
- const auto& ret = (*stack)[idx];
- TORCH_INTERNAL_ASSERT(ret.isTensor(),
- "This boxed batching rule does not currently support ops that return non-tensor values");
- (*stack)[idx] = makeBatched(reshape_dim_outof(0, batch_size, ret.toTensor()), 0, cur_level);
- }
- }
- // Use when all tensors arguments accept one (normal) batch dim.
- // This batching rule expands the batch dim on all Tensors, reshapes it into
- // dim 0, calls the op, and then reshapes the batch dim out of dim 0.
- // This is not the most efficient thing; if there are alternatives, plese try
- // to use them. Use this only as a last resort.
- #define EXISTING_BDIM_ALL_BOXED(op) \
- m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_existing_bdim_all_batch_rule>());
- template <int64_t feature_rank, int64_t contig_tensor_index=-1>
- inline void boxed_all_tensors_have_optional_bdim(
- const c10::OperatorHandle& op, torch::jit::Stack* stack) {
- const auto& schema = op.schema();
- const auto num_returns = schema.returns().size();
- const auto num_arguments = schema.arguments().size();
- c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
- auto maybe_layer = maybeCurrentDynamicLayer();
- vmap_check_escaped(maybe_layer, "boxed_all_tensors_have_optional_bdim");
- int64_t cur_level = maybe_layer->layerId();
- const auto arguments = torch::jit::last(stack, num_arguments);
- if (std::none_of(arguments.begin(), arguments.end(), ivalueParticipatesInCurrentLevel)) {
- op.callBoxed(stack);
- return;
- }
- int64_t args_begin = stack->size() - num_arguments;
- SmallVector<UnpackedBatchedTensor, 5> tensor_inputs;
- SmallVector<int64_t, 5> tensor_pos;
- int64_t batch_size;
- find_and_unpack_tensors(
- stack, num_arguments, cur_level,
- &tensor_inputs, &tensor_pos, &batch_size);
- optional<bool> is_no_batch_dim_case;
- for (const auto tensor_idx : c10::irange(0, tensor_inputs.size())) {
- const auto& value = std::get<0>(tensor_inputs[tensor_idx]);
- auto bdim = std::get<1>(tensor_inputs[tensor_idx]);
- const auto logical_rank = rankWithoutBatchDim(value, bdim);
- if (!is_no_batch_dim_case.has_value()) {
- is_no_batch_dim_case = (logical_rank == feature_rank);
- }
- auto value_ = ensure_has_bdim(value, bdim.has_value(), batch_size);
- if (!bdim.has_value()) {
- bdim = 0;
- }
- if (*is_no_batch_dim_case) {
- TORCH_INTERNAL_ASSERT(logical_rank == feature_rank);
- value_ = moveBatchDimToFront(value_, bdim);
- if (tensor_idx == contig_tensor_index) {
- value_ = value_.contiguous();
- }
- (*stack)[args_begin + tensor_pos[tensor_idx]] = std::move(value_);
- continue;
- }
- TORCH_INTERNAL_ASSERT(logical_rank == feature_rank + 1);
- value_ = reshape_dim_into(*bdim, 0, value_);
- if (tensor_idx == contig_tensor_index) {
- value_ = value_.contiguous();
- }
- (*stack)[args_begin + tensor_pos[tensor_idx]] = std::move(value_);
- }
- op.callBoxed(stack);
- for (const auto idx : c10::irange(args_begin, args_begin + num_returns)) {
- const auto& ret = (*stack)[idx];
- TORCH_INTERNAL_ASSERT(ret.isTensor(),
- "This boxed batching rule does not currently support ops that return non-tensor values");
- if (*is_no_batch_dim_case) {
- (*stack)[idx] = makeBatched(ret.toTensor(), 0, cur_level);
- } else {
- (*stack)[idx] = makeBatched(reshape_dim_outof(0, batch_size, ret.toTensor()), 0, cur_level);
- }
- }
- }
- // Useful for many NN operators.
- // The operator must satisfy the following:
- // - All arguments must accept an optional batch dim.
- // - All arguments must be the same rank
- #define ALL_TENSORS_HAVE_OPTIONAL_BDIM_BOXED(feature_rank, op) \
- m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_all_tensors_have_optional_bdim<feature_rank>>());
- #define ALL_TENSORS_HAVE_OPTIONAL_BDIM_BOXED_CONTIG1(feature_rank, op, contig_tensor_index) \
- m.impl(#op, \
- torch::CppFunction::makeFromBoxedFunction<\
- boxed_all_tensors_have_optional_bdim<\
- feature_rank, \
- contig_tensor_index>\
- >());
- template <typename A, A a, typename C>
- struct ExistingBdimBatchRuleHelper;
- template <typename F, F Func, typename A, typename... T>
- struct ExistingBdimBatchRuleHelper<F, Func, c10::guts::typelist::typelist<A, T...>> {
- static std::tuple<Tensor,optional<int64_t>> apply(
- const Tensor& self,
- optional<int64_t> self_bdim,
- T... extra_args) {
- auto self_ = reshape_dim_into(*self_bdim, 0, self);
- auto out = Func(self_, std::forward<T>(extra_args)...);
- return std::make_tuple(reshape_dim_outof_symint(0, self.sym_sizes()[*self_bdim], out), 0);
- }
- };
- // USAGE: EXISTING_BDIM_BATCH_RULE(at::cholesky_inverse)
- // INCORRECT USAGE: EXISTING_BDIM_BATCH_RULE(&at::cholesky_inverse)
- // It is important that this macro is not passed a function pointer!!
- #define EXISTING_BDIM_BATCH_RULE(fn) SINGLE_ARG(\
- ExistingBdimBatchRuleHelper<\
- decltype(&fn),\
- &fn,\
- c10::guts::function_traits<decltype(fn)>::parameter_types>::apply)
- #define EXISTING_BDIM(op) \
- VMAP_SUPPORT(op, EXISTING_BDIM_BATCH_RULE(ATEN_FN(op)));
- #define EXISTING_BDIM2(op, overload) \
- VMAP_SUPPORT2(op, overload, EXISTING_BDIM_BATCH_RULE(ATEN_FN2(op, overload)));
- #define INVOKE(object,ptrToMember) ((object).*(ptrToMember))
- template <typename F, F Method, typename... ExtraArgs>
- Tensor& unary_inplace_batch_rule(Tensor& self, optional<int64_t>, ExtraArgs... extra_args) {
- INVOKE(self, Method)(std::forward<ExtraArgs>(extra_args)...);
- return self;
- }
- inline int64_t get_bdim_size4(
- const Tensor& a_value, optional<int64_t> a_bdim,
- const Tensor& b_value, optional<int64_t> b_bdim,
- const Tensor& c_value, optional<int64_t> c_bdim,
- const Tensor& d_value, optional<int64_t> d_bdim) {
- if (a_bdim)
- return a_value.size(*a_bdim);
- if (b_bdim)
- return b_value.size(*b_bdim);
- if (c_bdim)
- return c_value.size(*c_bdim);
- if (d_bdim)
- return d_value.size(*d_bdim);
- TORCH_INTERNAL_ASSERT(false);
- }
- inline int64_t get_bdim_size3(
- const Tensor& a_value, optional<int64_t> a_bdim,
- const Tensor& b_value, optional<int64_t> b_bdim,
- const Tensor& c_value, optional<int64_t> c_bdim) {
- if (a_bdim)
- return a_value.size(*a_bdim);
- if (b_bdim)
- return b_value.size(*b_bdim);
- if (c_bdim)
- return c_value.size(*c_bdim);
- TORCH_INTERNAL_ASSERT(false);
- }
- inline int64_t get_bdim_size2(
- const Tensor& a_value, optional<int64_t> a_bdim,
- const Tensor& b_value, optional<int64_t> b_bdim) {
- if (a_bdim)
- return a_value.size(*a_bdim);
- if (b_bdim)
- return b_value.size(*b_bdim);
- TORCH_INTERNAL_ASSERT(false);
- }
- // [start, start + 1, ..., stop - 1]
- inline VmapDimVector range(int64_t start, int64_t stop) {
- TORCH_INTERNAL_ASSERT(stop >= start);
- VmapDimVector dims;
- dims.reserve(stop - start);
- for (int64_t i = start; i < stop; i++) {
- dims.emplace_back(i);
- }
- return dims;
- }
- std::tuple<Tensor, Tensor> _binary_pointwise_helper(
- const Tensor& tensor, optional<int64_t> tensor_batch_dim, const Tensor& other, optional<int64_t> other_batch_dim,
- bool do_type_promotion=true);
- }}
|