123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- #pragma once
- #include <c10/core/Allocator.h>
- #include <c10/util/Exception.h>
- #include <c10/util/Optional.h>
- #include <c10/util/Registry.h>
- #include <cstddef>
- #include <functional>
- #include <memory>
- // Forward-declares at::cuda::NVRTC
- namespace at {
- class Context;
- struct Generator;
- namespace cuda {
- struct NVRTC;
- } // namespace cuda
- } // namespace at
- // NB: Class must live in `at` due to limitations of Registry.h.
- namespace at {
- #ifdef _MSC_VER
- constexpr const char* CUDA_HELP =
- "PyTorch splits its backend into two shared libraries: a CPU library "
- "and a CUDA library; this error has occurred because you are trying "
- "to use some CUDA functionality, but the CUDA library has not been "
- "loaded by the dynamic linker for some reason. The CUDA library MUST "
- "be loaded, EVEN IF you don't directly use any symbols from the CUDA library! "
- "One common culprit is a lack of -INCLUDE:?warp_size@cuda@at@@YAHXZ "
- "in your link arguments; many dynamic linkers will delete dynamic library "
- "dependencies if you don't depend on any of their symbols. You can check "
- "if this has occurred by using link on your binary to see if there is a "
- "dependency on *_cuda.dll library.";
- #else
- constexpr const char* CUDA_HELP =
- "PyTorch splits its backend into two shared libraries: a CPU library "
- "and a CUDA library; this error has occurred because you are trying "
- "to use some CUDA functionality, but the CUDA library has not been "
- "loaded by the dynamic linker for some reason. The CUDA library MUST "
- "be loaded, EVEN IF you don't directly use any symbols from the CUDA library! "
- "One common culprit is a lack of -Wl,--no-as-needed in your link arguments; many "
- "dynamic linkers will delete dynamic library dependencies if you don't "
- "depend on any of their symbols. You can check if this has occurred by "
- "using ldd on your binary to see if there is a dependency on *_cuda.so "
- "library.";
- #endif
- // The CUDAHooksInterface is an omnibus interface for any CUDA functionality
- // which we may want to call into from CPU code (and thus must be dynamically
- // dispatched, to allow for separate compilation of CUDA code). How do I
- // decide if a function should live in this class? There are two tests:
- //
- // 1. Does the *implementation* of this function require linking against
- // CUDA libraries?
- //
- // 2. Is this function *called* from non-CUDA ATen code?
- //
- // (2) should filter out many ostensible use-cases, since many times a CUDA
- // function provided by ATen is only really ever used by actual CUDA code.
- //
- // TODO: Consider putting the stub definitions in another class, so that one
- // never forgets to implement each virtual function in the real implementation
- // in CUDAHooks. This probably doesn't buy us much though.
- struct TORCH_API CUDAHooksInterface {
- // This should never actually be implemented, but it is used to
- // squelch -Werror=non-virtual-dtor
- virtual ~CUDAHooksInterface() = default;
- // Initialize THCState and, transitively, the CUDA state
- virtual void initCUDA() const {
- TORCH_CHECK(false, "Cannot initialize CUDA without ATen_cuda library. ", CUDA_HELP);
- }
- virtual const Generator& getDefaultCUDAGenerator(DeviceIndex device_index = -1) const {
- (void)device_index; // Suppress unused variable warning
- TORCH_CHECK(false, "Cannot get default CUDA generator without ATen_cuda library. ", CUDA_HELP);
- }
- virtual Device getDeviceFromPtr(void* /*data*/) const {
- TORCH_CHECK(false, "Cannot get device of pointer on CUDA without ATen_cuda library. ", CUDA_HELP);
- }
- virtual bool isPinnedPtr(void* /*data*/) const {
- return false;
- }
- virtual bool hasCUDA() const {
- return false;
- }
- virtual bool hasCUDART() const {
- return false;
- }
- virtual bool hasMAGMA() const {
- return false;
- }
- virtual bool hasCuDNN() const {
- return false;
- }
- virtual bool hasCuSOLVER() const {
- return false;
- }
- virtual bool hasROCM() const {
- return false;
- }
- virtual const at::cuda::NVRTC& nvrtc() const {
- TORCH_CHECK(false, "NVRTC requires CUDA. ", CUDA_HELP);
- }
- virtual bool hasPrimaryContext(int64_t device_index) const {
- TORCH_CHECK(false, "Cannot call hasPrimaryContext(", device_index, ") without ATen_cuda library. ", CUDA_HELP);
- }
- virtual int64_t current_device() const {
- return -1;
- }
- virtual Allocator* getPinnedMemoryAllocator() const {
- TORCH_CHECK(false, "Pinned memory requires CUDA. ", CUDA_HELP);
- }
- virtual Allocator* getCUDADeviceAllocator() const {
- TORCH_CHECK(false, "CUDADeviceAllocator requires CUDA. ", CUDA_HELP);
- }
- virtual bool compiledWithCuDNN() const {
- return false;
- }
- virtual bool compiledWithMIOpen() const {
- return false;
- }
- virtual bool supportsDilatedConvolutionWithCuDNN() const {
- return false;
- }
- virtual bool supportsDepthwiseConvolutionWithCuDNN() const {
- return false;
- }
- virtual bool supportsBFloat16ConvolutionWithCuDNNv8() const {
- return false;
- }
- virtual long versionCuDNN() const {
- TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
- }
- virtual long versionCUDART() const {
- TORCH_CHECK(false, "Cannot query CUDART version without ATen_cuda library. ", CUDA_HELP);
- }
- virtual std::string showConfig() const {
- TORCH_CHECK(false, "Cannot query detailed CUDA version without ATen_cuda library. ", CUDA_HELP);
- }
- virtual double batchnormMinEpsilonCuDNN() const {
- TORCH_CHECK(false,
- "Cannot query batchnormMinEpsilonCuDNN() without ATen_cuda library. ", CUDA_HELP);
- }
- virtual int64_t cuFFTGetPlanCacheMaxSize(int64_t /*device_index*/) const {
- TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
- }
- virtual void cuFFTSetPlanCacheMaxSize(int64_t /*device_index*/, int64_t /*max_size*/) const {
- TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
- }
- virtual int64_t cuFFTGetPlanCacheSize(int64_t /*device_index*/) const {
- TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
- }
- virtual void cuFFTClearPlanCache(int64_t /*device_index*/) const {
- TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
- }
- virtual int getNumGPUs() const {
- return 0;
- }
- virtual void deviceSynchronize(int64_t /*device_index*/) const {
- TORCH_CHECK(false, "Cannot synchronize CUDA device without ATen_cuda library. ", CUDA_HELP);
- }
- };
- // NB: dummy argument to suppress "ISO C++11 requires at least one argument
- // for the "..." in a variadic macro"
- struct TORCH_API CUDAHooksArgs {};
- C10_DECLARE_REGISTRY(CUDAHooksRegistry, CUDAHooksInterface, CUDAHooksArgs);
- #define REGISTER_CUDA_HOOKS(clsname) \
- C10_REGISTER_CLASS(CUDAHooksRegistry, clsname, clsname)
- namespace detail {
- TORCH_API const CUDAHooksInterface& getCUDAHooks();
- } // namespace detail
- } // namespace at
|