123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- #pragma once
- #include <ATen/EmptyTensor.h>
- #include <ATen/Formatting.h>
- #include <ATen/core/ATenGeneral.h>
- #include <ATen/core/Generator.h>
- #include <c10/core/ScalarType.h>
- #include <c10/core/StorageImpl.h>
- #include <c10/core/UndefinedTensorImpl.h>
- #include <c10/util/ArrayRef.h>
- #include <c10/util/Exception.h>
- #include <c10/util/accumulate.h>
- #include <c10/util/irange.h>
- #include <algorithm>
- #include <memory>
- #include <numeric>
- #include <sstream>
- #include <typeinfo>
- #define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
- TypeName(const TypeName&) = delete; \
- void operator=(const TypeName&) = delete
- namespace at {
- TORCH_API int _crash_if_asan(int);
- // Converts a TensorList (i.e. ArrayRef<Tensor> to vector of TensorImpl*)
- // NB: This is ONLY used by legacy TH bindings, and ONLY used by cat.
- // Once cat is ported entirely to ATen this can be deleted!
- static inline std::vector<TensorImpl*> checked_dense_tensor_list_unwrap(
- ArrayRef<Tensor> tensors,
- const char* name,
- int pos,
- DeviceType device_type,
- ScalarType scalar_type) {
- std::vector<TensorImpl*> unwrapped;
- unwrapped.reserve(tensors.size());
- for (const auto i : c10::irange(tensors.size())) {
- const auto& expr = tensors[i];
- if (expr.layout() != Layout::Strided) {
- AT_ERROR(
- "Expected dense tensor but got ",
- expr.layout(),
- " for sequence element ",
- i,
- " in sequence argument at position #",
- pos,
- " '",
- name,
- "'");
- }
- if (expr.device().type() != device_type) {
- AT_ERROR(
- "Expected object of device type ",
- device_type,
- " but got device type ",
- expr.device().type(),
- " for sequence element ",
- i,
- " in sequence argument at position #",
- pos,
- " '",
- name,
- "'");
- }
- if (expr.scalar_type() != scalar_type) {
- AT_ERROR(
- "Expected object of scalar type ",
- scalar_type,
- " but got scalar type ",
- expr.scalar_type(),
- " for sequence element ",
- i,
- " in sequence argument at position #",
- pos,
- " '",
- name,
- "'");
- }
- unwrapped.emplace_back(expr.unsafeGetTensorImpl());
- }
- return unwrapped;
- }
- template <size_t N>
- std::array<int64_t, N> check_intlist(
- ArrayRef<int64_t> list,
- const char* name,
- int pos) {
- if (list.empty()) {
- // TODO: is this necessary? We used to treat nullptr-vs-not in IntList
- // differently with strides as a way of faking optional.
- list = {};
- }
- auto res = std::array<int64_t, N>();
- if (list.size() == 1 && N > 1) {
- res.fill(list[0]);
- return res;
- }
- if (list.size() != N) {
- AT_ERROR(
- "Expected a list of ",
- N,
- " ints but got ",
- list.size(),
- " for argument #",
- pos,
- " '",
- name,
- "'");
- }
- std::copy_n(list.begin(), N, res.begin());
- return res;
- }
- using at::detail::check_size_nonnegative;
- namespace detail {
- template <typename T>
- TORCH_API Tensor tensor_cpu(ArrayRef<T> values, const TensorOptions& options);
- template <typename T>
- TORCH_API Tensor
- tensor_backend(ArrayRef<T> values, const TensorOptions& options);
- template <typename T>
- TORCH_API Tensor
- tensor_complex_cpu(ArrayRef<T> values, const TensorOptions& options);
- template <typename T>
- TORCH_API Tensor
- tensor_complex_backend(ArrayRef<T> values, const TensorOptions& options);
- } // namespace detail
- } // namespace at
|