123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- #pragma once
- #include <ATen/NamedTensor.h>
- #include <ATen/TensorNames.h>
- #include <ATen/WrapDimUtilsMulti.h>
- #include <ATen/core/DimVector.h>
- #include <ATen/core/Tensor.h>
- #include <functional>
- namespace at {
- using NameVector = SmallVector<Dimname, kDimVectorStaticSize>;
- inline bool has_names(ITensorListRef tensors) {
- return std::any_of(tensors.begin(), tensors.end(), [](const Tensor& t) {
- return t.has_names();
- });
- }
- // Converts dim to an positional index. Errors if `dim` cannot be used to
- // refer to any dimension of tensor.
- TORCH_API int64_t dimname_to_position(const Tensor& tensor, Dimname dim);
- TORCH_API std::vector<int64_t> dimnames_to_positions(
- const Tensor& tensor,
- DimnameList dims);
- // Unifies two DimnameList to produce a third. This is useful for implementing
- // the named inference rule for binary broadcasting operations like add.
- //
- // There are three main constraints:
- // 1) Check matching: Names must match positionally from the right.
- // 2) Check misaligned: If a name `n` is in `names`, then it must appear at
- // the same index from the right in other.
- // 3) The output names are obtained by unifying the names individually from the
- // right.
- TORCH_API std::vector<Dimname> unify_from_right(
- DimnameList names,
- DimnameList other,
- const char* action = "broadcast");
- [[noreturn]] inline void reportNYIDimnameOverload(const char* op_name) {
- TORCH_CHECK(
- false,
- op_name,
- ": You passed a dimname (string) to this op in place of a dimension "
- "index but it does not yet support this behavior. Please pass a dimension "
- "index to work around this.");
- }
- // [NOTE] Writing name inference rules
- //
- // Operators that support named tensors are either composed of operations that
- // support named tensors or implement some name inference rule. An op that
- // implements its own name inference rule generally looks like the following:
- //
- // Tensor op(...) {
- // perform_shape_checks(...);
- // # (1)
- // auto maybe_outnames = compute_outnames(...);
- // auto result = [&]() {
- // NoNamesGuard guard;
- // return op_impl(...);
- // }();
- // # (2)
- // propagate_names_if_nonempty(result, maybe_outnames);
- //
- // Each op has (1) a compute outnames step and (2) a propagate names step.
- //
- // compute_outnames is responsible for checking that input names match and
- // determining what the output names should be. It returns either:
- // - {} (if the inputs tensors are all unnamed)
- // - non-empty outnames.
- //
- // propagate_names_if_nonempty propagates the outnames if they exist to the
- // result tensors.
- //
- // The {} case is an optimization; if the user does not use named tensors they
- // pay no perf cost for it.
- namespace namedinference {
- const Tensor& propagate_names_if_present_and_nonempty(
- const Tensor& result,
- c10::optional<DimnameList> maybe_names,
- bool validate_names = false);
- // Propagates `names` to `result` if `names` is not empty.
- // `names` can be empty; see [NOTE] Writing name inference rules
- // If `names` is not empty, `names.size()` should equal `result.dim()`.
- // When in doubt, use this overload instead of the others.
- TORCH_API const Tensor& propagate_names_if_nonempty(
- const Tensor& result,
- DimnameList maybe_names,
- bool validate_names = false);
- // Propagates `names` to `result`. Only use this if we are certain that there
- // are names to propagate (that names is not empty).
- TORCH_API const Tensor& propagate_names(
- const Tensor& result,
- DimnameList names,
- bool validate_names = false);
- // Propagates all names from src to result.
- TORCH_API void propagate_names(const Tensor& result, const Tensor& src);
- // Propagates all names except for those at the excluded_idxs.
- TORCH_API void propagate_names_except(
- const Tensor& result,
- const Tensor& src,
- IntArrayRef excluded_idxs);
- // Used for reduction ops that have a `keepdim` arg.
- TORCH_API void propagate_names_for_reduction(
- const Tensor& result,
- const Tensor& src,
- IntArrayRef excluded_idxs,
- bool keepdim);
- TORCH_API void propagate_names_for_expand(
- const Tensor& result,
- const Tensor& self);
- TORCH_API std::vector<Dimname> compute_cat_outnames(
- const MaterializedITensorListRef& tensors);
- TORCH_API std::vector<Dimname> compute_broadcast_outnames(
- const Tensor& self,
- const Tensor& other);
- TORCH_API std::vector<Dimname> broadcast_to_outnames(
- const Tensor& tensor,
- const Tensor& reference_tensor,
- const char* op_name);
- TORCH_API std::vector<Dimname> compute_matmul_outnames(
- const Tensor& self,
- const Tensor& other);
- TORCH_API std::vector<Dimname> compute_cdist_outnames(
- const Tensor& self,
- const Tensor& other);
- TORCH_API std::vector<Dimname> compute_bmm_outnames(
- const Tensor& result,
- const Tensor& self,
- const Tensor& other);
- TORCH_API std::vector<Dimname> compute_squeeze_outnames(const Tensor& tensor);
- TORCH_API std::vector<Dimname> compute_squeeze_outnames(
- const Tensor& tensor,
- std::bitset<dim_bitset_size> dims);
- std::vector<Dimname> compute_diagonal_outnames(
- const Tensor& tensor,
- int64_t dim1,
- int64_t dim2);
- // TensorImpl* overloads for Legacy TH/THC code. Use these sparingly.
- TORCH_API TensorImpl* propagate_names_if_nonempty(
- TensorImpl* result,
- DimnameList maybe_names,
- bool validate_names = false);
- TORCH_API TensorImpl* propagate_names(
- TensorImpl* result,
- DimnameList names,
- bool validate_names = false);
- TORCH_API void propagate_names(TensorImpl* result, /*const */ TensorImpl* src);
- TORCH_API inline void propagate_names(
- const TensorBase& result,
- DimnameList names,
- bool validate_names = false) {
- propagate_names(result.unsafeGetTensorImpl(), names, validate_names);
- }
- TORCH_API inline void propagate_names_if_nonempty(
- const TensorBase& result,
- DimnameList names,
- bool validate_names = false) {
- propagate_names_if_nonempty(
- result.unsafeGetTensorImpl(), names, validate_names);
- }
- TORCH_API inline void propagate_names(
- const TensorBase& result,
- const TensorBase& src) {
- propagate_names(result.unsafeGetTensorImpl(), src.unsafeGetTensorImpl());
- }
- // result = m1 @ m2 + bias
- TORCH_API std::vector<Dimname> propagate_names_for_addmm(
- const Tensor& m1,
- const Tensor& m2,
- const Tensor& bias);
- TORCH_API std::vector<Dimname> propagate_names_for_addmv(
- const Tensor& mat,
- const Tensor& vec,
- const Tensor& bias);
- TORCH_API void check_names_for_dot(TensorImpl* vec1, TensorImpl* vec2);
- TORCH_API std::vector<Dimname> compute_baddbmm_outnames(
- const Tensor& result,
- const Tensor& self,
- const Tensor& other,
- const Tensor& bias);
- TORCH_API bool are_names_equal(TensorImpl* self, TensorImpl* other);
- } // namespace namedinference
- } // namespace at
|