123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- import inspect
- from typing import Any, Callable, Dict, List, Optional
- import torch
- from torch.fx._compatibility import compatibility
- from torch.fx.graph_module import GraphModule
- __all__ = ["Partition", "split_module"]
- @compatibility(is_backward_compatible=True)
- class Partition:
- def __init__(self, name: str):
- self.name: str = name
- self.submod_name = f"submod_{name}"
- self.node_names: List[str] = []
- self.inputs: Dict[str, None] = {}
- self.outputs: Dict[str, None] = {}
- self.partitions_dependent_on: Dict[str, None] = {}
- self.partition_dependents: Dict[str, None] = {}
- self.graph: torch.fx.graph.Graph = torch.fx.graph.Graph()
- self.environment: Dict[torch.fx.node.Node, torch.fx.node.Node] = {}
- self.targets: Dict[str, Any] = {}
- def __repr__(self) -> str:
- return (
- f"name: {self.name},\n"
- f" nodes: {self.node_names},\n"
- f" inputs: {self.inputs},\n"
- f" outputs: {self.outputs},\n"
- f" partitions dependent on: {self.partitions_dependent_on},\n"
- f" partition dependents: {self.partition_dependents}"
- )
- # Creates subgraphs out of main graph
- @compatibility(is_backward_compatible=True)
- def split_module(
- m: GraphModule,
- root_m: torch.nn.Module,
- split_callback: Callable[[torch.fx.node.Node], int],
- qualname_map: Optional[Dict[str, str]] = None,
- keep_original_order: Optional[bool] = False,
- ):
- """
- Creates subgraphs out of main graph
- Args:
- m (GraphModule): Graph module to split
- root_m (torch.nn.Module): root nn module. Not currently used. Included
- because the root nn module is usually transformed via
- torch.fx._symbolic_trace.symbolic_trace (see example below)
- split_callback (Callable[[torch.fx.node.Node], int]): Callable function
- that maps a given Node instance to a numeric partition identifier.
- split_module will use this function as the policy for which operations
- appear in which partitions in the output Module.
- qualname_map: Optional[Dict[str, str]]: optional output parameter that returns a
- mapping from new target names in the module after split to old target
- names in the original module.
- keep_original_order: Optional[bool]: keep the original order of the GraphModule
- or use the Topological order of the new constructed GraphModule
- Returns:
- GraphModule: the module after split.
- Example:
- This is a sample setup:
- import torch
- from torch.fx.symbolic_trace import symbolic_trace
- from torch.fx.graph_module import GraphModule
- from torch.fx.node import Node
- from torch.fx.passes.split_module import split_module
- class MyModule(torch.nn.Module):
- def __init__(self):
- super().__init__()
- self.param = torch.nn.Parameter(torch.rand(3, 4))
- self.linear = torch.nn.Linear(4, 5)
- def forward(self, x, y):
- z = self.linear(x + self.param).clamp(min=0.0, max=1.0)
- w = self.linear(y).clamp(min=0.0, max=1.0)
- return z + w
- # symbolically trace model
- my_module = MyModule()
- my_module_traced = symbolic_trace(my_module)
- # random mod partitioning
- partition_counter = 0
- NPARTITIONS = 3
- def mod_partition(node: Node):
- global partition_counter
- partition = partition_counter % NPARTITIONS
- partition_counter = (partition_counter + 1) % NPARTITIONS
- return partition
- # split module in module with submodules
- module_with_submodules = split_module(
- my_module_traced, my_module, mod_partition
- )
- Output looks like this. Original graph is broken into partitions
- > print(module_with_submodules)
- GraphModule(
- (submod_0): GraphModule(
- (linear): Linear(in_features=4, out_features=5, bias=True)
- )
- (submod_1): GraphModule(
- (linear): Linear(in_features=4, out_features=5, bias=True)
- )
- (submod_2): GraphModule()
- )
- def forward(self, x, y):
- param = self.param
- submod_0 = self.submod_0(x, param, y); x = param = y = None
- getitem = submod_0[0]
- getitem_1 = submod_0[1]; submod_0 = None
- submod_1 = self.submod_1(getitem, getitem_1); getitem = getitem_1 = None
- getitem_2 = submod_1[0]
- getitem_3 = submod_1[1]; submod_1 = None
- submod_2 = self.submod_2(getitem_2, getitem_3); getitem_2 = getitem_3 = None
- return submod_2
- Output of split module is the same as output of input traced module.
- This is an example within a test setting:
- > orig_out = my_module_traced(x, y)
- > submodules_out = module_with_submodules(x, y)
- > self.assertEqual(orig_out, submodules_out)
- True
- """
- partitions: Dict[str, Partition] = {}
- orig_nodes: Dict[str, torch.fx.node.Node] = {}
- def record_cross_partition_use(
- def_node: torch.fx.node.Node, use_node: Optional[torch.fx.node.Node]
- ): # noqa: B950
- def_partition_name = getattr(def_node, "_fx_partition", None)
- use_partition_name = getattr(use_node, "_fx_partition", None)
- if def_partition_name != use_partition_name:
- if def_partition_name is not None:
- def_partition = partitions[def_partition_name]
- def_partition.outputs.setdefault(def_node.name)
- if use_partition_name is not None:
- def_partition.partition_dependents.setdefault(use_partition_name)
- if use_partition_name is not None:
- use_partition = partitions[use_partition_name]
- use_partition.inputs.setdefault(def_node.name)
- if def_partition_name is not None:
- use_partition.partitions_dependent_on.setdefault(def_partition_name)
- # split nodes into parititons
- for node in m.graph.nodes:
- orig_nodes[node.name] = node
- # TODO currently placeholders/parameters aren't put into random partitions,
- # rather they're added to the graphs where they are used down below
- if node.op in ["placeholder", "get_attr"]:
- continue
- if node.op == "output":
- torch.fx.graph.map_arg(
- node.args[0], lambda n: record_cross_partition_use(n, None)
- )
- continue
- partition_name = str(split_callback(node))
- # add node to partitions
- partition = partitions.get(partition_name)
- if partition is None:
- partitions[partition_name] = partition = Partition(partition_name)
- partition.node_names.append(node.name)
- node._fx_partition = partition_name
- torch.fx.graph.map_arg(
- node.args, lambda def_node: record_cross_partition_use(def_node, node)
- )
- torch.fx.graph.map_arg(
- node.kwargs, lambda def_node: record_cross_partition_use(def_node, node)
- ) # noqa: B950
- original_partition_order = list(partitions.keys())
- # find partitions with no dependencies
- root_partitions: List[str] = []
- for partition_name, partition in partitions.items():
- if not len(partition.partitions_dependent_on):
- root_partitions.append(partition_name)
- # check partitions for circular dependencies and create topological partition ordering
- sorted_partitions: List[str] = []
- while root_partitions:
- root_partition = root_partitions.pop()
- sorted_partitions.append(root_partition)
- for dependent in partitions[root_partition].partition_dependents:
- partitions[dependent].partitions_dependent_on.pop(root_partition)
- if not partitions[dependent].partitions_dependent_on:
- root_partitions.append(dependent)
- if len(sorted_partitions) != len(partitions):
- raise RuntimeError("cycle exists between partitions!")
- # add placeholders to parititons
- for partition_name in sorted_partitions:
- partition = partitions[partition_name]
- for input in partition.inputs:
- placeholder = partition.graph.placeholder(
- input,
- type_expr=orig_nodes[input].type,
- )
- placeholder.meta = orig_nodes[input].meta.copy()
- partition.environment[orig_nodes[input]] = placeholder
- # Transform nodes and collect targets for partition's submodule
- for node in m.graph.nodes:
- if hasattr(node, "_fx_partition"):
- partition = partitions[node._fx_partition]
- # swap out old graph nodes in kw/args with references to new nodes in this submodule
- environment = partition.environment
- gathered_args = torch.fx.graph.map_arg(node.args, lambda n: environment[n])
- gathered_kwargs = torch.fx.graph.map_arg(
- node.kwargs, lambda n: environment[n]
- )
- if node.op not in ["call_module", "get_attr"]:
- target = node.target
- else:
- target_atoms = node.target.split(".")
- target_attr = m
- for atom in target_atoms:
- if not hasattr(target_attr, atom):
- raise RuntimeError(f"Operator target {node.target} not found!")
- target_attr = getattr(target_attr, atom)
- # target = target_atoms[-1]
- target = "_".join(target_atoms)
- partition.targets[target] = target_attr
- # Fill in the passed-in mapping from new qualname to old qualname
- if qualname_map is not None:
- # When creating the split module later, the submodules will have
- # path prefix matching the corresponding partition's submod_name
- qualname = f"{partition.submod_name}.{target}"
- qualname_map[qualname] = node.target
- assert isinstance(gathered_args, tuple)
- assert isinstance(gathered_kwargs, dict)
- new_node = partition.graph.create_node(
- op=node.op,
- target=target,
- args=gathered_args,
- kwargs=gathered_kwargs,
- type_expr=node.type,
- )
- new_node.meta = node.meta.copy()
- partition.environment[node] = new_node
- # Set up values to construct base module
- base_mod_env: Dict[str, torch.fx.node.Node] = {}
- base_mod_graph: torch.fx.graph.Graph = torch.fx.graph.Graph()
- base_mod_attrs: Dict[str, torch.fx.graph_module.GraphModule] = {}
- for node in m.graph.nodes:
- if node.op == "placeholder":
- default_value = (
- node.args[0] if len(node.args) > 0 else inspect.Signature.empty
- )
- base_mod_env[node.name] = base_mod_graph.placeholder(
- node.target, type_expr=node.type, default_value=default_value
- )
- base_mod_env[node.name].meta = node.meta.copy()
- elif node.op == "get_attr":
- base_mod_env[node.name] = base_mod_graph.get_attr(node.target)
- base_mod_env[node.name].meta = node.meta.copy()
- attr_val = m
- for atom in node.target.split("."):
- if not hasattr(attr_val, atom):
- raise RuntimeError(f"Node target {node.target} not found!")
- attr_val = getattr(attr_val, atom)
- base_mod_attrs[node.target] = attr_val
- # Do some things iterating over the partitions in topological order again:
- # 1) Finish off submodule Graphs by setting corresponding outputs
- # 2) Construct GraphModules for each submodule
- # 3) Construct the base graph by emitting calls to those submodules in
- # topological order
- construct_order_partitions = (
- sorted_partitions if not keep_original_order else original_partition_order
- )
- for partition_name in construct_order_partitions:
- partition = partitions[partition_name]
- # Set correct output values
- output_vals = tuple(
- partition.environment[orig_nodes[name]] for name in partition.outputs
- )
- output_vals = output_vals[0] if len(output_vals) == 1 else output_vals # type: ignore[assignment]
- partition.graph.output(output_vals)
- # Construct GraphModule for this partition
- base_mod_attrs[partition.submod_name] = torch.fx.graph_module.GraphModule(
- partition.targets, partition.graph
- ) # noqa: B950
- # Emit call in base graph to this submodule
- output_val = base_mod_graph.call_module(
- partition.submod_name,
- tuple(base_mod_env[name] for name in partition.inputs),
- )
- if len(partition.outputs) > 1:
- # Unpack multiple return values from submodule
- output_val_proxy = torch.fx.proxy.Proxy(output_val)
- for i, output_name in enumerate(partition.outputs):
- base_mod_env[output_name] = output_val_proxy[i].node # type: ignore[index]
- else:
- base_mod_env[list(partition.outputs)[0]] = output_val
- for node in m.graph.nodes:
- if node.op == "output":
- base_mod_graph.output(
- torch.fx.graph.map_arg(node.args[0], lambda n: base_mod_env[n.name])
- ) # noqa: B950
- return torch.fx.graph_module.GraphModule(base_mod_attrs, base_mod_graph)
|