1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360 |
- import sys
- import torch
- from torch._C import _add_docstr, _fft # type: ignore[attr-defined]
- from torch._torch_docs import factory_common_args, common_args
- __all__ = ['fft', 'ifft', 'fft2', 'ifft2', 'fftn', 'ifftn',
- 'rfft', 'irfft', 'rfft2', 'irfft2', 'rfftn', 'irfftn',
- 'hfft', 'ihfft', 'fftfreq', 'rfftfreq', 'fftshift', 'ifftshift',
- 'Tensor']
- Tensor = torch.Tensor
- # Note: This not only adds the doc strings for the spectral ops, but
- # connects the torch.fft Python namespace to the torch._C._fft builtins.
- fft = _add_docstr(_fft.fft_fft, r"""
- fft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
- Computes the one dimensional discrete Fourier transform of :attr:`input`.
- Note:
- The Fourier domain representation of any real signal satisfies the
- Hermitian property: `X[i] = conj(X[-i])`. This function always returns both
- the positive and negative frequency terms even though, for real inputs, the
- negative frequencies are redundant. :func:`~torch.fft.rfft` returns the
- more compact one-sided representation where only the positive frequencies
- are returned.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimension.
- Args:
- input (Tensor): the input tensor
- n (int, optional): Signal length. If given, the input will either be zero-padded
- or trimmed to this length before computing the FFT.
- dim (int, optional): The dimension along which to take the one dimensional FFT.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.fft`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
- Calling the backward transform (:func:`~torch.fft.ifft`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ifft`
- the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- >>> t = torch.arange(4)
- >>> t
- tensor([0, 1, 2, 3])
- >>> torch.fft.fft(t)
- tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
- >>> t = torch.tensor([0.+1.j, 2.+3.j, 4.+5.j, 6.+7.j])
- >>> torch.fft.fft(t)
- tensor([12.+16.j, -8.+0.j, -4.-4.j, 0.-8.j])
- """.format(**common_args))
- ifft = _add_docstr(_fft.fft_ifft, r"""
- ifft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
- Computes the one dimensional inverse discrete Fourier transform of :attr:`input`.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimension.
- Args:
- input (Tensor): the input tensor
- n (int, optional): Signal length. If given, the input will either be zero-padded
- or trimmed to this length before computing the IFFT.
- dim (int, optional): The dimension along which to take the one dimensional IFFT.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.ifft`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
- Calling the forward transform (:func:`~torch.fft.fft`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ifft`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> t = torch.tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
- >>> torch.fft.ifft(t)
- tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])
- """.format(**common_args))
- fft2 = _add_docstr(_fft.fft_fft2, r"""
- fft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
- Computes the 2 dimensional discrete Fourier transform of :attr:`input`.
- Equivalent to :func:`~torch.fft.fftn` but FFTs only the last two dimensions by default.
- Note:
- The Fourier domain representation of any real signal satisfies the
- Hermitian property: ``X[i, j] = conj(X[-i, -j])``. This
- function always returns all positive and negative frequency terms even
- though, for real inputs, half of these values are redundant.
- :func:`~torch.fft.rfft2` returns the more compact one-sided representation
- where only the positive frequencies of the last dimension are returned.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: last two dimensions.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.fft2`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
- Where ``n = prod(s)`` is the logical FFT size.
- Calling the backward transform (:func:`~torch.fft.ifft2`) with the same
- normalization mode will apply an overall normalization of ``1/n``
- between the two transforms. This is required to make
- :func:`~torch.fft.ifft2` the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- >>> x = torch.rand(10, 10, dtype=torch.complex64)
- >>> fft2 = torch.fft.fft2(x)
- The discrete Fourier transform is separable, so :func:`~torch.fft.fft2`
- here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:
- >>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
- >>> torch.testing.assert_close(fft2, two_ffts, check_stride=False)
- """.format(**common_args))
- ifft2 = _add_docstr(_fft.fft_ifft2, r"""
- ifft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
- Computes the 2 dimensional inverse discrete Fourier transform of :attr:`input`.
- Equivalent to :func:`~torch.fft.ifftn` but IFFTs only the last two dimensions by default.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the IFFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: last two dimensions.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.ifft2`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
- Where ``n = prod(s)`` is the logical IFFT size.
- Calling the forward transform (:func:`~torch.fft.fft2`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ifft2`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> x = torch.rand(10, 10, dtype=torch.complex64)
- >>> ifft2 = torch.fft.ifft2(x)
- The discrete Fourier transform is separable, so :func:`~torch.fft.ifft2`
- here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:
- >>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
- >>> torch.testing.assert_close(ifft2, two_iffts, check_stride=False)
- """.format(**common_args))
- fftn = _add_docstr(_fft.fft_fftn, r"""
- fftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
- Computes the N dimensional discrete Fourier transform of :attr:`input`.
- Note:
- The Fourier domain representation of any real signal satisfies the
- Hermitian property: ``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])``. This
- function always returns all positive and negative frequency terms even
- though, for real inputs, half of these values are redundant.
- :func:`~torch.fft.rfftn` returns the more compact one-sided representation
- where only the positive frequencies of the last dimension are returned.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.fftn`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
- Where ``n = prod(s)`` is the logical FFT size.
- Calling the backward transform (:func:`~torch.fft.ifftn`) with the same
- normalization mode will apply an overall normalization of ``1/n``
- between the two transforms. This is required to make
- :func:`~torch.fft.ifftn` the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- >>> x = torch.rand(10, 10, dtype=torch.complex64)
- >>> fftn = torch.fft.fftn(x)
- The discrete Fourier transform is separable, so :func:`~torch.fft.fftn`
- here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:
- >>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
- >>> torch.testing.assert_close(fftn, two_ffts, check_stride=False)
- """.format(**common_args))
- ifftn = _add_docstr(_fft.fft_ifftn, r"""
- ifftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
- Computes the N dimensional inverse discrete Fourier transform of :attr:`input`.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the IFFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.ifftn`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
- Where ``n = prod(s)`` is the logical IFFT size.
- Calling the forward transform (:func:`~torch.fft.fftn`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ifftn`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> x = torch.rand(10, 10, dtype=torch.complex64)
- >>> ifftn = torch.fft.ifftn(x)
- The discrete Fourier transform is separable, so :func:`~torch.fft.ifftn`
- here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:
- >>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
- >>> torch.testing.assert_close(ifftn, two_iffts, check_stride=False)
- """.format(**common_args))
- rfft = _add_docstr(_fft.fft_rfft, r"""
- rfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
- Computes the one dimensional Fourier transform of real-valued :attr:`input`.
- The FFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])`` so
- the output contains only the positive frequencies below the Nyquist frequency.
- To compute the full output, use :func:`~torch.fft.fft`
- Note:
- Supports torch.half on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimension.
- Args:
- input (Tensor): the real input tensor
- n (int, optional): Signal length. If given, the input will either be zero-padded
- or trimmed to this length before computing the real FFT.
- dim (int, optional): The dimension along which to take the one dimensional real FFT.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.rfft`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
- Calling the backward transform (:func:`~torch.fft.irfft`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.irfft`
- the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- >>> t = torch.arange(4)
- >>> t
- tensor([0, 1, 2, 3])
- >>> torch.fft.rfft(t)
- tensor([ 6.+0.j, -2.+2.j, -2.+0.j])
- Compare against the full output from :func:`~torch.fft.fft`:
- >>> torch.fft.fft(t)
- tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
- Notice that the symmetric element ``T[-1] == T[1].conj()`` is omitted.
- At the Nyquist frequency ``T[-2] == T[2]`` is it's own symmetric pair,
- and therefore must always be real-valued.
- """.format(**common_args))
- irfft = _add_docstr(_fft.fft_irfft, r"""
- irfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
- Computes the inverse of :func:`~torch.fft.rfft`.
- :attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
- domain, as produced by :func:`~torch.fft.rfft`. By the Hermitian property, the
- output will be real-valued.
- Note:
- Some input frequencies must be real-valued to satisfy the Hermitian
- property. In these cases the imaginary component will be ignored.
- For example, any imaginary component in the zero-frequency term cannot
- be represented in a real output and so will always be ignored.
- Note:
- The correct interpretation of the Hermitian input depends on the length of
- the original data, as given by :attr:`n`. This is because each input shape
- could correspond to either an odd or even length signal. By default, the
- signal is assumed to be even length and odd signals will not round-trip
- properly. So, it is recommended to always pass the signal length :attr:`n`.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimension.
- With default arguments, size of the transformed dimension should be (2^n + 1) as argument
- `n` defaults to even output size = 2 * (transformed_dim_size - 1)
- Args:
- input (Tensor): the input tensor representing a half-Hermitian signal
- n (int, optional): Output signal length. This determines the length of the
- output signal. If given, the input will either be zero-padded or trimmed to this
- length before computing the real IFFT.
- Defaults to even output: ``n=2*(input.size(dim) - 1)``.
- dim (int, optional): The dimension along which to take the one dimensional real IFFT.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.irfft`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
- Calling the forward transform (:func:`~torch.fft.rfft`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.irfft`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> t = torch.linspace(0, 1, 5)
- >>> t
- tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
- >>> T = torch.fft.rfft(t)
- >>> T
- tensor([ 2.5000+0.0000j, -0.6250+0.8602j, -0.6250+0.2031j])
- Without specifying the output length to :func:`~torch.fft.irfft`, the output
- will not round-trip properly because the input is odd-length:
- >>> torch.fft.irfft(T)
- tensor([0.1562, 0.3511, 0.7812, 1.2114])
- So, it is recommended to always pass the signal length :attr:`n`:
- >>> roundtrip = torch.fft.irfft(T, t.numel())
- >>> torch.testing.assert_close(roundtrip, t, check_stride=False)
- """.format(**common_args))
- rfft2 = _add_docstr(_fft.fft_rfft2, r"""
- rfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
- Computes the 2-dimensional discrete Fourier transform of real :attr:`input`.
- Equivalent to :func:`~torch.fft.rfftn` but FFTs only the last two dimensions by default.
- The FFT of a real signal is Hermitian-symmetric, ``X[i, j] = conj(X[-i, -j])``,
- so the full :func:`~torch.fft.fft2` output contains redundant information.
- :func:`~torch.fft.rfft2` instead omits the negative frequencies in the last
- dimension.
- Note:
- Supports torch.half on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the real FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: last two dimensions.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.rfft2`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real FFT orthonormal)
- Where ``n = prod(s)`` is the logical FFT size.
- Calling the backward transform (:func:`~torch.fft.irfft2`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.irfft2`
- the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- >>> t = torch.rand(10, 10)
- >>> rfft2 = torch.fft.rfft2(t)
- >>> rfft2.size()
- torch.Size([10, 6])
- Compared against the full output from :func:`~torch.fft.fft2`, we have all
- elements up to the Nyquist frequency.
- >>> fft2 = torch.fft.fft2(t)
- >>> torch.testing.assert_close(fft2[..., :6], rfft2, check_stride=False)
- The discrete Fourier transform is separable, so :func:`~torch.fft.rfft2`
- here is equivalent to a combination of :func:`~torch.fft.fft` and
- :func:`~torch.fft.rfft`:
- >>> two_ffts = torch.fft.fft(torch.fft.rfft(t, dim=1), dim=0)
- >>> torch.testing.assert_close(rfft2, two_ffts, check_stride=False)
- """.format(**common_args))
- irfft2 = _add_docstr(_fft.fft_irfft2, r"""
- irfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
- Computes the inverse of :func:`~torch.fft.rfft2`.
- Equivalent to :func:`~torch.fft.irfftn` but IFFTs only the last two dimensions by default.
- :attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
- domain, as produced by :func:`~torch.fft.rfft2`. By the Hermitian property, the
- output will be real-valued.
- Note:
- Some input frequencies must be real-valued to satisfy the Hermitian
- property. In these cases the imaginary component will be ignored.
- For example, any imaginary component in the zero-frequency term cannot
- be represented in a real output and so will always be ignored.
- Note:
- The correct interpretation of the Hermitian input depends on the length of
- the original data, as given by :attr:`s`. This is because each input shape
- could correspond to either an odd or even length signal. By default, the
- signal is assumed to be even length and odd signals will not round-trip
- properly. So, it is recommended to always pass the signal shape :attr:`s`.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- With default arguments, the size of last dimension should be (2^n + 1) as argument
- `s` defaults to even output size = 2 * (last_dim_size - 1)
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the real FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Defaults to even output in the last dimension:
- ``s[-1] = 2*(input.size(dim[-1]) - 1)``.
- dim (Tuple[int], optional): Dimensions to be transformed.
- The last dimension must be the half-Hermitian compressed dimension.
- Default: last two dimensions.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.irfft2`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
- Where ``n = prod(s)`` is the logical IFFT size.
- Calling the forward transform (:func:`~torch.fft.rfft2`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.irfft2`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> t = torch.rand(10, 9)
- >>> T = torch.fft.rfft2(t)
- Without specifying the output length to :func:`~torch.fft.irfft2`, the output
- will not round-trip properly because the input is odd-length in the last
- dimension:
- >>> torch.fft.irfft2(T).size()
- torch.Size([10, 8])
- So, it is recommended to always pass the signal shape :attr:`s`.
- >>> roundtrip = torch.fft.irfft2(T, t.size())
- >>> roundtrip.size()
- torch.Size([10, 9])
- >>> torch.testing.assert_close(roundtrip, t, check_stride=False)
- """.format(**common_args))
- rfftn = _add_docstr(_fft.fft_rfftn, r"""
- rfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
- Computes the N-dimensional discrete Fourier transform of real :attr:`input`.
- The FFT of a real signal is Hermitian-symmetric,
- ``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])`` so the full
- :func:`~torch.fft.fftn` output contains redundant information.
- :func:`~torch.fft.rfftn` instead omits the negative frequencies in the
- last dimension.
- Note:
- Supports torch.half on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the real FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.rfftn`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real FFT orthonormal)
- Where ``n = prod(s)`` is the logical FFT size.
- Calling the backward transform (:func:`~torch.fft.irfftn`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.irfftn`
- the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- >>> t = torch.rand(10, 10)
- >>> rfftn = torch.fft.rfftn(t)
- >>> rfftn.size()
- torch.Size([10, 6])
- Compared against the full output from :func:`~torch.fft.fftn`, we have all
- elements up to the Nyquist frequency.
- >>> fftn = torch.fft.fftn(t)
- >>> torch.testing.assert_close(fftn[..., :6], rfftn, check_stride=False)
- The discrete Fourier transform is separable, so :func:`~torch.fft.rfftn`
- here is equivalent to a combination of :func:`~torch.fft.fft` and
- :func:`~torch.fft.rfft`:
- >>> two_ffts = torch.fft.fft(torch.fft.rfft(t, dim=1), dim=0)
- >>> torch.testing.assert_close(rfftn, two_ffts, check_stride=False)
- """.format(**common_args))
- irfftn = _add_docstr(_fft.fft_irfftn, r"""
- irfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
- Computes the inverse of :func:`~torch.fft.rfftn`.
- :attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
- domain, as produced by :func:`~torch.fft.rfftn`. By the Hermitian property, the
- output will be real-valued.
- Note:
- Some input frequencies must be real-valued to satisfy the Hermitian
- property. In these cases the imaginary component will be ignored.
- For example, any imaginary component in the zero-frequency term cannot
- be represented in a real output and so will always be ignored.
- Note:
- The correct interpretation of the Hermitian input depends on the length of
- the original data, as given by :attr:`s`. This is because each input shape
- could correspond to either an odd or even length signal. By default, the
- signal is assumed to be even length and odd signals will not round-trip
- properly. So, it is recommended to always pass the signal shape :attr:`s`.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- With default arguments, the size of last dimension should be (2^n + 1) as argument
- `s` defaults to even output size = 2 * (last_dim_size - 1)
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the real FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Defaults to even output in the last dimension:
- ``s[-1] = 2*(input.size(dim[-1]) - 1)``.
- dim (Tuple[int], optional): Dimensions to be transformed.
- The last dimension must be the half-Hermitian compressed dimension.
- Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.irfftn`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
- Where ``n = prod(s)`` is the logical IFFT size.
- Calling the forward transform (:func:`~torch.fft.rfftn`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.irfftn`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> t = torch.rand(10, 9)
- >>> T = torch.fft.rfftn(t)
- Without specifying the output length to :func:`~torch.fft.irfft`, the output
- will not round-trip properly because the input is odd-length in the last
- dimension:
- >>> torch.fft.irfftn(T).size()
- torch.Size([10, 8])
- So, it is recommended to always pass the signal shape :attr:`s`.
- >>> roundtrip = torch.fft.irfftn(T, t.size())
- >>> roundtrip.size()
- torch.Size([10, 9])
- >>> torch.testing.assert_close(roundtrip, t, check_stride=False)
- """.format(**common_args))
- hfft = _add_docstr(_fft.fft_hfft, r"""
- hfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
- Computes the one dimensional discrete Fourier transform of a Hermitian
- symmetric :attr:`input` signal.
- Note:
- :func:`~torch.fft.hfft`/:func:`~torch.fft.ihfft` are analogous to
- :func:`~torch.fft.rfft`/:func:`~torch.fft.irfft`. The real FFT expects
- a real signal in the time-domain and gives a Hermitian symmetry in the
- frequency-domain. The Hermitian FFT is the opposite; Hermitian symmetric in
- the time-domain and real-valued in the frequency-domain. For this reason,
- special care needs to be taken with the length argument :attr:`n`, in the
- same way as with :func:`~torch.fft.irfft`.
- Note:
- Because the signal is Hermitian in the time-domain, the result will be
- real in the frequency domain. Note that some input frequencies must be
- real-valued to satisfy the Hermitian property. In these cases the imaginary
- component will be ignored. For example, any imaginary component in
- ``input[0]`` would result in one or more complex frequency terms which
- cannot be represented in a real output and so will always be ignored.
- Note:
- The correct interpretation of the Hermitian input depends on the length of
- the original data, as given by :attr:`n`. This is because each input shape
- could correspond to either an odd or even length signal. By default, the
- signal is assumed to be even length and odd signals will not round-trip
- properly. So, it is recommended to always pass the signal length :attr:`n`.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimension.
- With default arguments, size of the transformed dimension should be (2^n + 1) as argument
- `n` defaults to even output size = 2 * (transformed_dim_size - 1)
- Args:
- input (Tensor): the input tensor representing a half-Hermitian signal
- n (int, optional): Output signal length. This determines the length of the
- real output. If given, the input will either be zero-padded or trimmed to this
- length before computing the Hermitian FFT.
- Defaults to even output: ``n=2*(input.size(dim) - 1)``.
- dim (int, optional): The dimension along which to take the one dimensional Hermitian FFT.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.hfft`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)
- Calling the backward transform (:func:`~torch.fft.ihfft`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ihfft`
- the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- Taking a real-valued frequency signal and bringing it into the time domain
- gives Hermitian symmetric output:
- >>> t = torch.linspace(0, 1, 5)
- >>> t
- tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
- >>> T = torch.fft.ifft(t)
- >>> T
- tensor([ 0.5000-0.0000j, -0.1250-0.1720j, -0.1250-0.0406j, -0.1250+0.0406j,
- -0.1250+0.1720j])
- Note that ``T[1] == T[-1].conj()`` and ``T[2] == T[-2].conj()`` is
- redundant. We can thus compute the forward transform without considering
- negative frequencies:
- >>> torch.fft.hfft(T[:3], n=5)
- tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
- Like with :func:`~torch.fft.irfft`, the output length must be given in order
- to recover an even length output:
- >>> torch.fft.hfft(T[:3])
- tensor([0.1250, 0.2809, 0.6250, 0.9691])
- """.format(**common_args))
- ihfft = _add_docstr(_fft.fft_ihfft, r"""
- ihfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
- Computes the inverse of :func:`~torch.fft.hfft`.
- :attr:`input` must be a real-valued signal, interpreted in the Fourier domain.
- The IFFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])``.
- :func:`~torch.fft.ihfft` represents this in the one-sided form where only the
- positive frequencies below the Nyquist frequency are included. To compute the
- full output, use :func:`~torch.fft.ifft`.
- Note:
- Supports torch.half on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimension.
- Args:
- input (Tensor): the real input tensor
- n (int, optional): Signal length. If given, the input will either be zero-padded
- or trimmed to this length before computing the Hermitian IFFT.
- dim (int, optional): The dimension along which to take the one dimensional Hermitian IFFT.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.ihfft`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
- Calling the forward transform (:func:`~torch.fft.hfft`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ihfft`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> t = torch.arange(5)
- >>> t
- tensor([0, 1, 2, 3, 4])
- >>> torch.fft.ihfft(t)
- tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j])
- Compare against the full output from :func:`~torch.fft.ifft`:
- >>> torch.fft.ifft(t)
- tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j,
- -0.5000+0.6882j])
- """.format(**common_args))
- hfft2 = _add_docstr(_fft.fft_hfft2, r"""
- hfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
- Computes the 2-dimensional discrete Fourier transform of a Hermitian symmetric
- :attr:`input` signal. Equivalent to :func:`~torch.fft.hfftn` but only
- transforms the last two dimensions by default.
- :attr:`input` is interpreted as a one-sided Hermitian signal in the time
- domain. By the Hermitian property, the Fourier transform will be real-valued.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- With default arguments, the size of last dimension should be (2^n + 1) as argument
- `s` defaults to even output size = 2 * (last_dim_size - 1)
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the Hermitian FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Defaults to even output in the last dimension:
- ``s[-1] = 2*(input.size(dim[-1]) - 1)``.
- dim (Tuple[int], optional): Dimensions to be transformed.
- The last dimension must be the half-Hermitian compressed dimension.
- Default: last two dimensions.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.hfft2`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)
- Where ``n = prod(s)`` is the logical FFT size.
- Calling the backward transform (:func:`~torch.fft.ihfft2`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ihfft2`
- the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- Starting from a real frequency-space signal, we can generate a
- Hermitian-symmetric time-domain signal:
- >>> T = torch.rand(10, 9)
- >>> t = torch.fft.ihfft2(T)
- Without specifying the output length to :func:`~torch.fft.hfftn`, the
- output will not round-trip properly because the input is odd-length in the
- last dimension:
- >>> torch.fft.hfft2(t).size()
- torch.Size([10, 10])
- So, it is recommended to always pass the signal shape :attr:`s`.
- >>> roundtrip = torch.fft.hfft2(t, T.size())
- >>> roundtrip.size()
- torch.Size([10, 9])
- >>> torch.allclose(roundtrip, T)
- True
- """.format(**common_args))
- ihfft2 = _add_docstr(_fft.fft_ihfft2, r"""
- ihfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
- Computes the 2-dimensional inverse discrete Fourier transform of real
- :attr:`input`. Equivalent to :func:`~torch.fft.ihfftn` but transforms only the
- two last dimensions by default.
- Note:
- Supports torch.half on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the Hermitian IFFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: last two dimensions.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.ihfft2`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian IFFT orthonormal)
- Where ``n = prod(s)`` is the logical IFFT size.
- Calling the forward transform (:func:`~torch.fft.hfft2`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ihfft2`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> T = torch.rand(10, 10)
- >>> t = torch.fft.ihfft2(t)
- >>> t.size()
- torch.Size([10, 6])
- Compared against the full output from :func:`~torch.fft.ifft2`, the
- Hermitian time-space signal takes up only half the space.
- >>> fftn = torch.fft.ifft2(t)
- >>> torch.allclose(fftn[..., :6], rfftn)
- True
- The discrete Fourier transform is separable, so :func:`~torch.fft.ihfft2`
- here is equivalent to a combination of :func:`~torch.fft.ifft` and
- :func:`~torch.fft.ihfft`:
- >>> two_ffts = torch.fft.ifft(torch.fft.ihfft(t, dim=1), dim=0)
- >>> torch.allclose(t, two_ffts)
- True
- """.format(**common_args))
- hfftn = _add_docstr(_fft.fft_hfftn, r"""
- hfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
- Computes the n-dimensional discrete Fourier transform of a Hermitian symmetric
- :attr:`input` signal.
- :attr:`input` is interpreted as a one-sided Hermitian signal in the time
- domain. By the Hermitian property, the Fourier transform will be real-valued.
- Note:
- :func:`~torch.fft.hfftn`/:func:`~torch.fft.ihfftn` are analogous to
- :func:`~torch.fft.rfftn`/:func:`~torch.fft.irfftn`. The real FFT expects
- a real signal in the time-domain and gives Hermitian symmetry in the
- frequency-domain. The Hermitian FFT is the opposite; Hermitian symmetric in
- the time-domain and real-valued in the frequency-domain. For this reason,
- special care needs to be taken with the shape argument :attr:`s`, in the
- same way as with :func:`~torch.fft.irfftn`.
- Note:
- Some input frequencies must be real-valued to satisfy the Hermitian
- property. In these cases the imaginary component will be ignored.
- For example, any imaginary component in the zero-frequency term cannot
- be represented in a real output and so will always be ignored.
- Note:
- The correct interpretation of the Hermitian input depends on the length of
- the original data, as given by :attr:`s`. This is because each input shape
- could correspond to either an odd or even length signal. By default, the
- signal is assumed to be even length and odd signals will not round-trip
- properly. It is recommended to always pass the signal shape :attr:`s`.
- Note:
- Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- With default arguments, the size of last dimension should be (2^n + 1) as argument
- `s` defaults to even output size = 2 * (last_dim_size - 1)
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the real FFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Defaults to even output in the last dimension:
- ``s[-1] = 2*(input.size(dim[-1]) - 1)``.
- dim (Tuple[int], optional): Dimensions to be transformed.
- The last dimension must be the half-Hermitian compressed dimension.
- Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
- norm (str, optional): Normalization mode. For the forward transform
- (:func:`~torch.fft.hfftn`), these correspond to:
- * ``"forward"`` - normalize by ``1/n``
- * ``"backward"`` - no normalization
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)
- Where ``n = prod(s)`` is the logical FFT size.
- Calling the backward transform (:func:`~torch.fft.ihfftn`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ihfftn`
- the exact inverse.
- Default is ``"backward"`` (no normalization).
- Keyword args:
- {out}
- Example:
- Starting from a real frequency-space signal, we can generate a
- Hermitian-symmetric time-domain signal:
- >>> T = torch.rand(10, 9)
- >>> t = torch.fft.ihfftn(T)
- Without specifying the output length to :func:`~torch.fft.hfftn`, the
- output will not round-trip properly because the input is odd-length in the
- last dimension:
- >>> torch.fft.hfftn(t).size()
- torch.Size([10, 10])
- So, it is recommended to always pass the signal shape :attr:`s`.
- >>> roundtrip = torch.fft.hfftn(t, T.size())
- >>> roundtrip.size()
- torch.Size([10, 9])
- >>> torch.allclose(roundtrip, T)
- True
- """.format(**common_args))
- ihfftn = _add_docstr(_fft.fft_ihfftn, r"""
- ihfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
- Computes the N-dimensional inverse discrete Fourier transform of real :attr:`input`.
- :attr:`input` must be a real-valued signal, interpreted in the Fourier domain.
- The n-dimensional IFFT of a real signal is Hermitian-symmetric,
- ``X[i, j, ...] = conj(X[-i, -j, ...])``. :func:`~torch.fft.ihfftn` represents
- this in the one-sided form where only the positive frequencies below the
- Nyquist frequency are included in the last signal dimension. To compute the
- full output, use :func:`~torch.fft.ifftn`.
- Note:
- Supports torch.half on CUDA with GPU Architecture SM53 or greater.
- However it only supports powers of 2 signal length in every transformed dimensions.
- Args:
- input (Tensor): the input tensor
- s (Tuple[int], optional): Signal size in the transformed dimensions.
- If given, each dimension ``dim[i]`` will either be zero-padded or
- trimmed to the length ``s[i]`` before computing the Hermitian IFFT.
- If a length ``-1`` is specified, no padding is done in that dimension.
- Default: ``s = [input.size(d) for d in dim]``
- dim (Tuple[int], optional): Dimensions to be transformed.
- Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
- norm (str, optional): Normalization mode. For the backward transform
- (:func:`~torch.fft.ihfftn`), these correspond to:
- * ``"forward"`` - no normalization
- * ``"backward"`` - normalize by ``1/n``
- * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian IFFT orthonormal)
- Where ``n = prod(s)`` is the logical IFFT size.
- Calling the forward transform (:func:`~torch.fft.hfftn`) with the same
- normalization mode will apply an overall normalization of ``1/n`` between
- the two transforms. This is required to make :func:`~torch.fft.ihfftn`
- the exact inverse.
- Default is ``"backward"`` (normalize by ``1/n``).
- Keyword args:
- {out}
- Example:
- >>> T = torch.rand(10, 10)
- >>> ihfftn = torch.fft.ihfftn(T)
- >>> ihfftn.size()
- torch.Size([10, 6])
- Compared against the full output from :func:`~torch.fft.ifftn`, we have all
- elements up to the Nyquist frequency.
- >>> ifftn = torch.fft.ifftn(t)
- >>> torch.allclose(ifftn[..., :6], ihfftn)
- True
- The discrete Fourier transform is separable, so :func:`~torch.fft.ihfftn`
- here is equivalent to a combination of :func:`~torch.fft.ihfft` and
- :func:`~torch.fft.ifft`:
- >>> two_iffts = torch.fft.ifft(torch.fft.ihfft(t, dim=1), dim=0)
- >>> torch.allclose(ihfftn, two_iffts)
- True
- """.format(**common_args))
- fftfreq = _add_docstr(_fft.fft_fftfreq, r"""
- fftfreq(n, d=1.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
- Computes the discrete Fourier Transform sample frequencies for a signal of size :attr:`n`.
- Note:
- By convention, :func:`~torch.fft.fft` returns positive frequency terms
- first, followed by the negative frequencies in reverse order, so that
- ``f[-i]`` for all :math:`0 < i \leq n/2`` in Python gives the negative
- frequency terms. For an FFT of length :attr:`n` and with inputs spaced in
- length unit :attr:`d`, the frequencies are::
- f = [0, 1, ..., (n - 1) // 2, -(n // 2), ..., -1] / (d * n)
- Note:
- For even lengths, the Nyquist frequency at ``f[n/2]`` can be thought of as
- either negative or positive. :func:`~torch.fft.fftfreq` follows NumPy's
- convention of taking it to be negative.
- Args:
- n (int): the FFT length
- d (float, optional): The sampling length scale.
- The spacing between individual samples of the FFT input.
- The default assumes unit spacing, dividing that result by the actual
- spacing gives the result in physical frequency units.
- Keyword Args:
- {out}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Example:
- >>> torch.fft.fftfreq(5)
- tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000])
- For even input, we can see the Nyquist frequency at ``f[2]`` is given as
- negative:
- >>> torch.fft.fftfreq(4)
- tensor([ 0.0000, 0.2500, -0.5000, -0.2500])
- """.format(**factory_common_args))
- rfftfreq = _add_docstr(_fft.fft_rfftfreq, r"""
- rfftfreq(n, d=1.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
- Computes the sample frequencies for :func:`~torch.fft.rfft` with a signal of size :attr:`n`.
- Note:
- :func:`~torch.fft.rfft` returns Hermitian one-sided output, so only the
- positive frequency terms are returned. For a real FFT of length :attr:`n`
- and with inputs spaced in length unit :attr:`d`, the frequencies are::
- f = torch.arange((n + 1) // 2) / (d * n)
- Note:
- For even lengths, the Nyquist frequency at ``f[n/2]`` can be thought of as
- either negative or positive. Unlike :func:`~torch.fft.fftfreq`,
- :func:`~torch.fft.rfftfreq` always returns it as positive.
- Args:
- n (int): the real FFT length
- d (float, optional): The sampling length scale.
- The spacing between individual samples of the FFT input.
- The default assumes unit spacing, dividing that result by the actual
- spacing gives the result in physical frequency units.
- Keyword Args:
- {out}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Example:
- >>> torch.fft.rfftfreq(5)
- tensor([0.0000, 0.2000, 0.4000])
- >>> torch.fft.rfftfreq(4)
- tensor([0.0000, 0.2500, 0.5000])
- Compared to the output from :func:`~torch.fft.fftfreq`, we see that the
- Nyquist frequency at ``f[2]`` has changed sign:
- >>> torch.fft.fftfreq(4)
- tensor([ 0.0000, 0.2500, -0.5000, -0.2500])
- """.format(**factory_common_args))
- fftshift = _add_docstr(_fft.fft_fftshift, r"""
- fftshift(input, dim=None) -> Tensor
- Reorders n-dimensional FFT data, as provided by :func:`~torch.fft.fftn`, to have
- negative frequency terms first.
- This performs a periodic shift of n-dimensional data such that the origin
- ``(0, ..., 0)`` is moved to the center of the tensor. Specifically, to
- ``input.shape[dim] // 2`` in each selected dimension.
- Note:
- By convention, the FFT returns positive frequency terms first, followed by
- the negative frequencies in reverse order, so that ``f[-i]`` for all
- :math:`0 < i \leq n/2` in Python gives the negative frequency terms.
- :func:`~torch.fft.fftshift` rearranges all frequencies into ascending order
- from negative to positive with the zero-frequency term in the center.
- Note:
- For even lengths, the Nyquist frequency at ``f[n/2]`` can be thought of as
- either negative or positive. :func:`~torch.fft.fftshift` always puts the
- Nyquist term at the 0-index. This is the same convention used by
- :func:`~torch.fft.fftfreq`.
- Args:
- input (Tensor): the tensor in FFT order
- dim (int, Tuple[int], optional): The dimensions to rearrange.
- Only dimensions specified here will be rearranged, any other dimensions
- will be left in their original order.
- Default: All dimensions of :attr:`input`.
- Example:
- >>> f = torch.fft.fftfreq(4)
- >>> f
- tensor([ 0.0000, 0.2500, -0.5000, -0.2500])
- >>> torch.fft.fftshift(f)
- tensor([-0.5000, -0.2500, 0.0000, 0.2500])
- Also notice that the Nyquist frequency term at ``f[2]`` was moved to the
- beginning of the tensor.
- This also works for multi-dimensional transforms:
- >>> x = torch.fft.fftfreq(5, d=1/5) + 0.1 * torch.fft.fftfreq(5, d=1/5).unsqueeze(1)
- >>> x
- tensor([[ 0.0000, 1.0000, 2.0000, -2.0000, -1.0000],
- [ 0.1000, 1.1000, 2.1000, -1.9000, -0.9000],
- [ 0.2000, 1.2000, 2.2000, -1.8000, -0.8000],
- [-0.2000, 0.8000, 1.8000, -2.2000, -1.2000],
- [-0.1000, 0.9000, 1.9000, -2.1000, -1.1000]])
- >>> torch.fft.fftshift(x)
- tensor([[-2.2000, -1.2000, -0.2000, 0.8000, 1.8000],
- [-2.1000, -1.1000, -0.1000, 0.9000, 1.9000],
- [-2.0000, -1.0000, 0.0000, 1.0000, 2.0000],
- [-1.9000, -0.9000, 0.1000, 1.1000, 2.1000],
- [-1.8000, -0.8000, 0.2000, 1.2000, 2.2000]])
- :func:`~torch.fft.fftshift` can also be useful for spatial data. If our
- data is defined on a centered grid (``[-(N//2), (N-1)//2]``) then we can
- use the standard FFT defined on an uncentered grid (``[0, N)``) by first
- applying an :func:`~torch.fft.ifftshift`.
- >>> x_centered = torch.arange(-5, 5)
- >>> x_uncentered = torch.fft.ifftshift(x_centered)
- >>> fft_uncentered = torch.fft.fft(x_uncentered)
- Similarly, we can convert the frequency domain components to centered
- convention by applying :func:`~torch.fft.fftshift`.
- >>> fft_centered = torch.fft.fftshift(fft_uncentered)
- The inverse transform, from centered Fourier space back to centered spatial
- data, can be performed by applying the inverse shifts in reverse order:
- >>> x_centered_2 = torch.fft.fftshift(torch.fft.ifft(torch.fft.ifftshift(fft_centered)))
- >>> torch.testing.assert_close(x_centered.to(torch.complex64), x_centered_2, check_stride=False)
- """)
- ifftshift = _add_docstr(_fft.fft_ifftshift, r"""
- ifftshift(input, dim=None) -> Tensor
- Inverse of :func:`~torch.fft.fftshift`.
- Args:
- input (Tensor): the tensor in FFT order
- dim (int, Tuple[int], optional): The dimensions to rearrange.
- Only dimensions specified here will be rearranged, any other dimensions
- will be left in their original order.
- Default: All dimensions of :attr:`input`.
- Example:
- >>> f = torch.fft.fftfreq(5)
- >>> f
- tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000])
- A round-trip through :func:`~torch.fft.fftshift` and
- :func:`~torch.fft.ifftshift` gives the same result:
- >>> shifted = torch.fft.fftshift(f)
- >>> torch.fft.ifftshift(shifted)
- tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000])
- """)
|