123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- from functools import update_wrapper
- from numbers import Number
- import torch
- import torch.nn.functional as F
- from typing import Dict, Any
- from torch.overrides import is_tensor_like
- euler_constant = 0.57721566490153286060 # Euler Mascheroni Constant
- __all__ = ["broadcast_all", "logits_to_probs", "clamp_probs", "probs_to_logits", "lazy_property",
- "tril_matrix_to_vec", "vec_to_tril_matrix"]
- def broadcast_all(*values):
- r"""
- Given a list of values (possibly containing numbers), returns a list where each
- value is broadcasted based on the following rules:
- - `torch.*Tensor` instances are broadcasted as per :ref:`_broadcasting-semantics`.
- - numbers.Number instances (scalars) are upcast to tensors having
- the same size and type as the first tensor passed to `values`. If all the
- values are scalars, then they are upcasted to scalar Tensors.
- Args:
- values (list of `numbers.Number`, `torch.*Tensor` or objects implementing __torch_function__)
- Raises:
- ValueError: if any of the values is not a `numbers.Number` instance,
- a `torch.*Tensor` instance, or an instance implementing __torch_function__
- """
- if not all(is_tensor_like(v) or isinstance(v, Number)
- for v in values):
- raise ValueError('Input arguments must all be instances of numbers.Number, '
- 'torch.Tensor or objects implementing __torch_function__.')
- if not all(is_tensor_like(v) for v in values):
- options: Dict[str, Any] = dict(dtype=torch.get_default_dtype())
- for value in values:
- if isinstance(value, torch.Tensor):
- options = dict(dtype=value.dtype, device=value.device)
- break
- new_values = [v if is_tensor_like(v) else torch.tensor(v, **options)
- for v in values]
- return torch.broadcast_tensors(*new_values)
- return torch.broadcast_tensors(*values)
- def _standard_normal(shape, dtype, device):
- if torch._C._get_tracing_state():
- # [JIT WORKAROUND] lack of support for .normal_()
- return torch.normal(torch.zeros(shape, dtype=dtype, device=device),
- torch.ones(shape, dtype=dtype, device=device))
- return torch.empty(shape, dtype=dtype, device=device).normal_()
- def _sum_rightmost(value, dim):
- r"""
- Sum out ``dim`` many rightmost dimensions of a given tensor.
- Args:
- value (Tensor): A tensor of ``.dim()`` at least ``dim``.
- dim (int): The number of rightmost dims to sum out.
- """
- if dim == 0:
- return value
- required_shape = value.shape[:-dim] + (-1,)
- return value.reshape(required_shape).sum(-1)
- def logits_to_probs(logits, is_binary=False):
- r"""
- Converts a tensor of logits into probabilities. Note that for the
- binary case, each value denotes log odds, whereas for the
- multi-dimensional case, the values along the last dimension denote
- the log probabilities (possibly unnormalized) of the events.
- """
- if is_binary:
- return torch.sigmoid(logits)
- return F.softmax(logits, dim=-1)
- def clamp_probs(probs):
- eps = torch.finfo(probs.dtype).eps
- return probs.clamp(min=eps, max=1 - eps)
- def probs_to_logits(probs, is_binary=False):
- r"""
- Converts a tensor of probabilities into logits. For the binary case,
- this denotes the probability of occurrence of the event indexed by `1`.
- For the multi-dimensional case, the values along the last dimension
- denote the probabilities of occurrence of each of the events.
- """
- ps_clamped = clamp_probs(probs)
- if is_binary:
- return torch.log(ps_clamped) - torch.log1p(-ps_clamped)
- return torch.log(ps_clamped)
- class lazy_property:
- r"""
- Used as a decorator for lazy loading of class attributes. This uses a
- non-data descriptor that calls the wrapped method to compute the property on
- first call; thereafter replacing the wrapped method into an instance
- attribute.
- """
- def __init__(self, wrapped):
- self.wrapped = wrapped
- update_wrapper(self, wrapped)
- def __get__(self, instance, obj_type=None):
- if instance is None:
- return _lazy_property_and_property(self.wrapped)
- with torch.enable_grad():
- value = self.wrapped(instance)
- setattr(instance, self.wrapped.__name__, value)
- return value
- class _lazy_property_and_property(lazy_property, property):
- """We want lazy properties to look like multiple things.
- * property when Sphinx autodoc looks
- * lazy_property when Distribution validate_args looks
- """
- def __init__(self, wrapped):
- return property.__init__(self, wrapped)
- def tril_matrix_to_vec(mat, diag=0):
- r"""
- Convert a `D x D` matrix or a batch of matrices into a (batched) vector
- which comprises of lower triangular elements from the matrix in row order.
- """
- n = mat.shape[-1]
- if not torch._C._get_tracing_state() and (diag < -n or diag >= n):
- raise ValueError(f'diag ({diag}) provided is outside [{-n}, {n-1}].')
- arange = torch.arange(n, device=mat.device)
- tril_mask = arange < arange.view(-1, 1) + (diag + 1)
- vec = mat[..., tril_mask]
- return vec
- def vec_to_tril_matrix(vec, diag=0):
- r"""
- Convert a vector or a batch of vectors into a batched `D x D`
- lower triangular matrix containing elements from the vector in row order.
- """
- # +ve root of D**2 + (1+2*diag)*D - |diag| * (diag+1) - 2*vec.shape[-1] = 0
- n = (-(1 + 2 * diag) + ((1 + 2 * diag)**2 + 8 * vec.shape[-1] + 4 * abs(diag) * (diag + 1))**0.5) / 2
- eps = torch.finfo(vec.dtype).eps
- if not torch._C._get_tracing_state() and (round(n) - n > eps):
- raise ValueError(f'The size of last dimension is {vec.shape[-1]} which cannot be expressed as ' +
- 'the lower triangular part of a square D x D matrix.')
- n = torch.round(n).long() if isinstance(n, torch.Tensor) else round(n)
- mat = vec.new_zeros(vec.shape[:-1] + torch.Size((n, n)))
- arange = torch.arange(n, device=vec.device)
- tril_mask = arange < arange.view(-1, 1) + (diag + 1)
- mat[..., tril_mask] = vec
- return mat
|