12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- import math
- import torch
- from torch import inf, nan
- from torch.distributions import Chi2, constraints
- from torch.distributions.distribution import Distribution
- from torch.distributions.utils import _standard_normal, broadcast_all
- __all__ = ['StudentT']
- class StudentT(Distribution):
- r"""
- Creates a Student's t-distribution parameterized by degree of
- freedom :attr:`df`, mean :attr:`loc` and scale :attr:`scale`.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = StudentT(torch.tensor([2.0]))
- >>> m.sample() # Student's t-distributed with degrees of freedom=2
- tensor([ 0.1046])
- Args:
- df (float or Tensor): degrees of freedom
- loc (float or Tensor): mean of the distribution
- scale (float or Tensor): scale of the distribution
- """
- arg_constraints = {'df': constraints.positive, 'loc': constraints.real, 'scale': constraints.positive}
- support = constraints.real
- has_rsample = True
- @property
- def mean(self):
- m = self.loc.clone(memory_format=torch.contiguous_format)
- m[self.df <= 1] = nan
- return m
- @property
- def mode(self):
- return self.loc
- @property
- def variance(self):
- m = self.df.clone(memory_format=torch.contiguous_format)
- m[self.df > 2] = self.scale[self.df > 2].pow(2) * self.df[self.df > 2] / (self.df[self.df > 2] - 2)
- m[(self.df <= 2) & (self.df > 1)] = inf
- m[self.df <= 1] = nan
- return m
- def __init__(self, df, loc=0., scale=1., validate_args=None):
- self.df, self.loc, self.scale = broadcast_all(df, loc, scale)
- self._chi2 = Chi2(self.df)
- batch_shape = self.df.size()
- super().__init__(batch_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(StudentT, _instance)
- batch_shape = torch.Size(batch_shape)
- new.df = self.df.expand(batch_shape)
- new.loc = self.loc.expand(batch_shape)
- new.scale = self.scale.expand(batch_shape)
- new._chi2 = self._chi2.expand(batch_shape)
- super(StudentT, new).__init__(batch_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def rsample(self, sample_shape=torch.Size()):
- # NOTE: This does not agree with scipy implementation as much as other distributions.
- # (see https://github.com/fritzo/notebooks/blob/master/debug-student-t.ipynb). Using DoubleTensor
- # parameters seems to help.
- # X ~ Normal(0, 1)
- # Z ~ Chi2(df)
- # Y = X / sqrt(Z / df) ~ StudentT(df)
- shape = self._extended_shape(sample_shape)
- X = _standard_normal(shape, dtype=self.df.dtype, device=self.df.device)
- Z = self._chi2.rsample(sample_shape)
- Y = X * torch.rsqrt(Z / self.df)
- return self.loc + self.scale * Y
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- y = (value - self.loc) / self.scale
- Z = (self.scale.log() +
- 0.5 * self.df.log() +
- 0.5 * math.log(math.pi) +
- torch.lgamma(0.5 * self.df) -
- torch.lgamma(0.5 * (self.df + 1.)))
- return -0.5 * (self.df + 1.) * torch.log1p(y**2. / self.df) - Z
- def entropy(self):
- lbeta = torch.lgamma(0.5 * self.df) + math.lgamma(0.5) - torch.lgamma(0.5 * (self.df + 1))
- return (self.scale.log() +
- 0.5 * (self.df + 1) *
- (torch.digamma(0.5 * (self.df + 1)) - torch.digamma(0.5 * self.df)) +
- 0.5 * self.df.log() + lbeta)
|