123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- import torch
- from torch.distributions import constraints
- from torch.distributions.categorical import Categorical
- from torch.distributions.utils import clamp_probs, broadcast_all
- from torch.distributions.distribution import Distribution
- from torch.distributions.transformed_distribution import TransformedDistribution
- from torch.distributions.transforms import ExpTransform
- __all__ = ['ExpRelaxedCategorical', 'RelaxedOneHotCategorical']
- class ExpRelaxedCategorical(Distribution):
- r"""
- Creates a ExpRelaxedCategorical parameterized by
- :attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
- Returns the log of a point in the simplex. Based on the interface to
- :class:`OneHotCategorical`.
- Implementation based on [1].
- See also: :func:`torch.distributions.OneHotCategorical`
- Args:
- temperature (Tensor): relaxation temperature
- probs (Tensor): event probabilities
- logits (Tensor): unnormalized log probability for each event
- [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
- (Maddison et al, 2017)
- [2] Categorical Reparametrization with Gumbel-Softmax
- (Jang et al, 2017)
- """
- arg_constraints = {'probs': constraints.simplex,
- 'logits': constraints.real_vector}
- support = constraints.real_vector # The true support is actually a submanifold of this.
- has_rsample = True
- def __init__(self, temperature, probs=None, logits=None, validate_args=None):
- self._categorical = Categorical(probs, logits)
- self.temperature = temperature
- batch_shape = self._categorical.batch_shape
- event_shape = self._categorical.param_shape[-1:]
- super().__init__(batch_shape, event_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(ExpRelaxedCategorical, _instance)
- batch_shape = torch.Size(batch_shape)
- new.temperature = self.temperature
- new._categorical = self._categorical.expand(batch_shape)
- super(ExpRelaxedCategorical, new).__init__(batch_shape, self.event_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def _new(self, *args, **kwargs):
- return self._categorical._new(*args, **kwargs)
- @property
- def param_shape(self):
- return self._categorical.param_shape
- @property
- def logits(self):
- return self._categorical.logits
- @property
- def probs(self):
- return self._categorical.probs
- def rsample(self, sample_shape=torch.Size()):
- shape = self._extended_shape(sample_shape)
- uniforms = clamp_probs(torch.rand(shape, dtype=self.logits.dtype, device=self.logits.device))
- gumbels = -((-(uniforms.log())).log())
- scores = (self.logits + gumbels) / self.temperature
- return scores - scores.logsumexp(dim=-1, keepdim=True)
- def log_prob(self, value):
- K = self._categorical._num_events
- if self._validate_args:
- self._validate_sample(value)
- logits, value = broadcast_all(self.logits, value)
- log_scale = (torch.full_like(self.temperature, float(K)).lgamma() -
- self.temperature.log().mul(-(K - 1)))
- score = logits - value.mul(self.temperature)
- score = (score - score.logsumexp(dim=-1, keepdim=True)).sum(-1)
- return score + log_scale
- class RelaxedOneHotCategorical(TransformedDistribution):
- r"""
- Creates a RelaxedOneHotCategorical distribution parametrized by
- :attr:`temperature`, and either :attr:`probs` or :attr:`logits`.
- This is a relaxed version of the :class:`OneHotCategorical` distribution, so
- its samples are on simplex, and are reparametrizable.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = RelaxedOneHotCategorical(torch.tensor([2.2]),
- ... torch.tensor([0.1, 0.2, 0.3, 0.4]))
- >>> m.sample()
- tensor([ 0.1294, 0.2324, 0.3859, 0.2523])
- Args:
- temperature (Tensor): relaxation temperature
- probs (Tensor): event probabilities
- logits (Tensor): unnormalized log probability for each event
- """
- arg_constraints = {'probs': constraints.simplex,
- 'logits': constraints.real_vector}
- support = constraints.simplex
- has_rsample = True
- def __init__(self, temperature, probs=None, logits=None, validate_args=None):
- base_dist = ExpRelaxedCategorical(temperature, probs, logits, validate_args=validate_args)
- super().__init__(base_dist, ExpTransform(), validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(RelaxedOneHotCategorical, _instance)
- return super().expand(batch_shape, _instance=new)
- @property
- def temperature(self):
- return self.base_dist.temperature
- @property
- def logits(self):
- return self.base_dist.logits
- @property
- def probs(self):
- return self.base_dist.probs
|