123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- import torch
- from numbers import Number
- from torch.distributions import constraints
- from torch.distributions.distribution import Distribution
- from torch.distributions.transformed_distribution import TransformedDistribution
- from torch.distributions.transforms import SigmoidTransform
- from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
- __all__ = ['LogitRelaxedBernoulli', 'RelaxedBernoulli']
- class LogitRelaxedBernoulli(Distribution):
- r"""
- Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
- or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
- distribution.
- Samples are logits of values in (0, 1). See [1] for more details.
- Args:
- temperature (Tensor): relaxation temperature
- probs (Number, Tensor): the probability of sampling `1`
- logits (Number, Tensor): the log-odds of sampling `1`
- [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random
- Variables (Maddison et al, 2017)
- [2] Categorical Reparametrization with Gumbel-Softmax
- (Jang et al, 2017)
- """
- arg_constraints = {'probs': constraints.unit_interval,
- 'logits': constraints.real}
- support = constraints.real
- def __init__(self, temperature, probs=None, logits=None, validate_args=None):
- self.temperature = temperature
- if (probs is None) == (logits is None):
- raise ValueError("Either `probs` or `logits` must be specified, but not both.")
- if probs is not None:
- is_scalar = isinstance(probs, Number)
- self.probs, = broadcast_all(probs)
- else:
- is_scalar = isinstance(logits, Number)
- self.logits, = broadcast_all(logits)
- self._param = self.probs if probs is not None else self.logits
- if is_scalar:
- batch_shape = torch.Size()
- else:
- batch_shape = self._param.size()
- super().__init__(batch_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(LogitRelaxedBernoulli, _instance)
- batch_shape = torch.Size(batch_shape)
- new.temperature = self.temperature
- if 'probs' in self.__dict__:
- new.probs = self.probs.expand(batch_shape)
- new._param = new.probs
- if 'logits' in self.__dict__:
- new.logits = self.logits.expand(batch_shape)
- new._param = new.logits
- super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def _new(self, *args, **kwargs):
- return self._param.new(*args, **kwargs)
- @lazy_property
- def logits(self):
- return probs_to_logits(self.probs, is_binary=True)
- @lazy_property
- def probs(self):
- return logits_to_probs(self.logits, is_binary=True)
- @property
- def param_shape(self):
- return self._param.size()
- def rsample(self, sample_shape=torch.Size()):
- shape = self._extended_shape(sample_shape)
- probs = clamp_probs(self.probs.expand(shape))
- uniforms = clamp_probs(torch.rand(shape, dtype=probs.dtype, device=probs.device))
- return (uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()) / self.temperature
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- logits, value = broadcast_all(self.logits, value)
- diff = logits - value.mul(self.temperature)
- return self.temperature.log() + diff - 2 * diff.exp().log1p()
- class RelaxedBernoulli(TransformedDistribution):
- r"""
- Creates a RelaxedBernoulli distribution, parametrized by
- :attr:`temperature`, and either :attr:`probs` or :attr:`logits`
- (but not both). This is a relaxed version of the `Bernoulli` distribution,
- so the values are in (0, 1), and has reparametrizable samples.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = RelaxedBernoulli(torch.tensor([2.2]),
- ... torch.tensor([0.1, 0.2, 0.3, 0.99]))
- >>> m.sample()
- tensor([ 0.2951, 0.3442, 0.8918, 0.9021])
- Args:
- temperature (Tensor): relaxation temperature
- probs (Number, Tensor): the probability of sampling `1`
- logits (Number, Tensor): the log-odds of sampling `1`
- """
- arg_constraints = {'probs': constraints.unit_interval,
- 'logits': constraints.real}
- support = constraints.unit_interval
- has_rsample = True
- def __init__(self, temperature, probs=None, logits=None, validate_args=None):
- base_dist = LogitRelaxedBernoulli(temperature, probs, logits)
- super().__init__(base_dist, SigmoidTransform(), validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(RelaxedBernoulli, _instance)
- return super().expand(batch_shape, _instance=new)
- @property
- def temperature(self):
- return self.base_dist.temperature
- @property
- def logits(self):
- return self.base_dist.logits
- @property
- def probs(self):
- return self.base_dist.probs
|