123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- import torch
- from torch.distributions import constraints
- from torch.distributions.categorical import Categorical
- from torch.distributions.distribution import Distribution
- __all__ = ['OneHotCategorical', 'OneHotCategoricalStraightThrough']
- class OneHotCategorical(Distribution):
- r"""
- Creates a one-hot categorical distribution parameterized by :attr:`probs` or
- :attr:`logits`.
- Samples are one-hot coded vectors of size ``probs.size(-1)``.
- .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
- and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
- will return this normalized value.
- The `logits` argument will be interpreted as unnormalized log probabilities
- and can therefore be any real number. It will likewise be normalized so that
- the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
- will return this normalized value.
- See also: :func:`torch.distributions.Categorical` for specifications of
- :attr:`probs` and :attr:`logits`.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
- >>> m.sample() # equal probability of 0, 1, 2, 3
- tensor([ 0., 0., 0., 1.])
- Args:
- probs (Tensor): event probabilities
- logits (Tensor): event log probabilities (unnormalized)
- """
- arg_constraints = {'probs': constraints.simplex,
- 'logits': constraints.real_vector}
- support = constraints.one_hot
- has_enumerate_support = True
- def __init__(self, probs=None, logits=None, validate_args=None):
- self._categorical = Categorical(probs, logits)
- batch_shape = self._categorical.batch_shape
- event_shape = self._categorical.param_shape[-1:]
- super().__init__(batch_shape, event_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(OneHotCategorical, _instance)
- batch_shape = torch.Size(batch_shape)
- new._categorical = self._categorical.expand(batch_shape)
- super(OneHotCategorical, new).__init__(batch_shape, self.event_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def _new(self, *args, **kwargs):
- return self._categorical._new(*args, **kwargs)
- @property
- def _param(self):
- return self._categorical._param
- @property
- def probs(self):
- return self._categorical.probs
- @property
- def logits(self):
- return self._categorical.logits
- @property
- def mean(self):
- return self._categorical.probs
- @property
- def mode(self):
- probs = self._categorical.probs
- mode = probs.argmax(axis=-1)
- return torch.nn.functional.one_hot(mode, num_classes=probs.shape[-1]).to(probs)
- @property
- def variance(self):
- return self._categorical.probs * (1 - self._categorical.probs)
- @property
- def param_shape(self):
- return self._categorical.param_shape
- def sample(self, sample_shape=torch.Size()):
- sample_shape = torch.Size(sample_shape)
- probs = self._categorical.probs
- num_events = self._categorical._num_events
- indices = self._categorical.sample(sample_shape)
- return torch.nn.functional.one_hot(indices, num_events).to(probs)
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- indices = value.max(-1)[1]
- return self._categorical.log_prob(indices)
- def entropy(self):
- return self._categorical.entropy()
- def enumerate_support(self, expand=True):
- n = self.event_shape[0]
- values = torch.eye(n, dtype=self._param.dtype, device=self._param.device)
- values = values.view((n,) + (1,) * len(self.batch_shape) + (n,))
- if expand:
- values = values.expand((n,) + self.batch_shape + (n,))
- return values
- class OneHotCategoricalStraightThrough(OneHotCategorical):
- r"""
- Creates a reparameterizable :class:`OneHotCategorical` distribution based on the straight-
- through gradient estimator from [1].
- [1] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
- (Bengio et al, 2013)
- """
- has_rsample = True
- def rsample(self, sample_shape=torch.Size()):
- samples = self.sample(sample_shape)
- probs = self._categorical.probs # cached via @lazy_property
- return samples + (probs - probs.detach())
|