123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- import torch
- import torch.nn.functional as F
- from torch.distributions import constraints
- from torch.distributions.distribution import Distribution
- from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
- __all__ = ['NegativeBinomial']
- class NegativeBinomial(Distribution):
- r"""
- Creates a Negative Binomial distribution, i.e. distribution
- of the number of successful independent and identical Bernoulli trials
- before :attr:`total_count` failures are achieved. The probability
- of success of each Bernoulli trial is :attr:`probs`.
- Args:
- total_count (float or Tensor): non-negative number of negative Bernoulli
- trials to stop, although the distribution is still valid for real
- valued count
- probs (Tensor): Event probabilities of success in the half open interval [0, 1)
- logits (Tensor): Event log-odds for probabilities of success
- """
- arg_constraints = {'total_count': constraints.greater_than_eq(0),
- 'probs': constraints.half_open_interval(0., 1.),
- 'logits': constraints.real}
- support = constraints.nonnegative_integer
- def __init__(self, total_count, probs=None, logits=None, validate_args=None):
- if (probs is None) == (logits is None):
- raise ValueError("Either `probs` or `logits` must be specified, but not both.")
- if probs is not None:
- self.total_count, self.probs, = broadcast_all(total_count, probs)
- self.total_count = self.total_count.type_as(self.probs)
- else:
- self.total_count, self.logits, = broadcast_all(total_count, logits)
- self.total_count = self.total_count.type_as(self.logits)
- self._param = self.probs if probs is not None else self.logits
- batch_shape = self._param.size()
- super().__init__(batch_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(NegativeBinomial, _instance)
- batch_shape = torch.Size(batch_shape)
- new.total_count = self.total_count.expand(batch_shape)
- if 'probs' in self.__dict__:
- new.probs = self.probs.expand(batch_shape)
- new._param = new.probs
- if 'logits' in self.__dict__:
- new.logits = self.logits.expand(batch_shape)
- new._param = new.logits
- super(NegativeBinomial, new).__init__(batch_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def _new(self, *args, **kwargs):
- return self._param.new(*args, **kwargs)
- @property
- def mean(self):
- return self.total_count * torch.exp(self.logits)
- @property
- def mode(self):
- return ((self.total_count - 1) * self.logits.exp()).floor().clamp(min=0.)
- @property
- def variance(self):
- return self.mean / torch.sigmoid(-self.logits)
- @lazy_property
- def logits(self):
- return probs_to_logits(self.probs, is_binary=True)
- @lazy_property
- def probs(self):
- return logits_to_probs(self.logits, is_binary=True)
- @property
- def param_shape(self):
- return self._param.size()
- @lazy_property
- def _gamma(self):
- # Note we avoid validating because self.total_count can be zero.
- return torch.distributions.Gamma(concentration=self.total_count,
- rate=torch.exp(-self.logits),
- validate_args=False)
- def sample(self, sample_shape=torch.Size()):
- with torch.no_grad():
- rate = self._gamma.sample(sample_shape=sample_shape)
- return torch.poisson(rate)
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- log_unnormalized_prob = (self.total_count * F.logsigmoid(-self.logits) +
- value * F.logsigmoid(self.logits))
- log_normalization = (-torch.lgamma(self.total_count + value) + torch.lgamma(1. + value) +
- torch.lgamma(self.total_count))
- log_normalization[self.total_count + value == 0.] = 0.
- return log_unnormalized_prob - log_normalization
|