12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- from numbers import Number
- import torch
- from torch import nan
- from torch.distributions import constraints
- from torch.distributions.distribution import Distribution
- from torch.distributions.gamma import Gamma
- from torch.distributions.utils import broadcast_all
- __all__ = ['FisherSnedecor']
- class FisherSnedecor(Distribution):
- r"""
- Creates a Fisher-Snedecor distribution parameterized by :attr:`df1` and :attr:`df2`.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = FisherSnedecor(torch.tensor([1.0]), torch.tensor([2.0]))
- >>> m.sample() # Fisher-Snedecor-distributed with df1=1 and df2=2
- tensor([ 0.2453])
- Args:
- df1 (float or Tensor): degrees of freedom parameter 1
- df2 (float or Tensor): degrees of freedom parameter 2
- """
- arg_constraints = {'df1': constraints.positive, 'df2': constraints.positive}
- support = constraints.positive
- has_rsample = True
- def __init__(self, df1, df2, validate_args=None):
- self.df1, self.df2 = broadcast_all(df1, df2)
- self._gamma1 = Gamma(self.df1 * 0.5, self.df1)
- self._gamma2 = Gamma(self.df2 * 0.5, self.df2)
- if isinstance(df1, Number) and isinstance(df2, Number):
- batch_shape = torch.Size()
- else:
- batch_shape = self.df1.size()
- super().__init__(batch_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(FisherSnedecor, _instance)
- batch_shape = torch.Size(batch_shape)
- new.df1 = self.df1.expand(batch_shape)
- new.df2 = self.df2.expand(batch_shape)
- new._gamma1 = self._gamma1.expand(batch_shape)
- new._gamma2 = self._gamma2.expand(batch_shape)
- super(FisherSnedecor, new).__init__(batch_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- @property
- def mean(self):
- df2 = self.df2.clone(memory_format=torch.contiguous_format)
- df2[df2 <= 2] = nan
- return df2 / (df2 - 2)
- @property
- def mode(self):
- mode = (self.df1 - 2) / self.df1 * self.df2 / (self.df2 + 2)
- mode[self.df1 <= 2] = nan
- return mode
- @property
- def variance(self):
- df2 = self.df2.clone(memory_format=torch.contiguous_format)
- df2[df2 <= 4] = nan
- return 2 * df2.pow(2) * (self.df1 + df2 - 2) / (self.df1 * (df2 - 2).pow(2) * (df2 - 4))
- def rsample(self, sample_shape=torch.Size(())):
- shape = self._extended_shape(sample_shape)
- # X1 ~ Gamma(df1 / 2, 1 / df1), X2 ~ Gamma(df2 / 2, 1 / df2)
- # Y = df2 * df1 * X1 / (df1 * df2 * X2) = X1 / X2 ~ F(df1, df2)
- X1 = self._gamma1.rsample(sample_shape).view(shape)
- X2 = self._gamma2.rsample(sample_shape).view(shape)
- tiny = torch.finfo(X2.dtype).tiny
- X2.clamp_(min=tiny)
- Y = X1 / X2
- Y.clamp_(min=tiny)
- return Y
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- ct1 = self.df1 * 0.5
- ct2 = self.df2 * 0.5
- ct3 = self.df1 / self.df2
- t1 = (ct1 + ct2).lgamma() - ct1.lgamma() - ct2.lgamma()
- t2 = ct1 * ct3.log() + (ct1 - 1) * torch.log(value)
- t3 = (ct1 + ct2) * torch.log1p(ct3 * value)
- return t1 + t2 - t3
|