123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- from numbers import Number
- import math
- import torch
- from torch.distributions import constraints
- from torch.distributions.exp_family import ExponentialFamily
- from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
- from torch.nn.functional import binary_cross_entropy_with_logits
- __all__ = ['ContinuousBernoulli']
- class ContinuousBernoulli(ExponentialFamily):
- r"""
- Creates a continuous Bernoulli distribution parameterized by :attr:`probs`
- or :attr:`logits` (but not both).
- The distribution is supported in [0, 1] and parameterized by 'probs' (in
- (0,1)) or 'logits' (real-valued). Note that, unlike the Bernoulli, 'probs'
- does not correspond to a probability and 'logits' does not correspond to
- log-odds, but the same names are used due to the similarity with the
- Bernoulli. See [1] for more details.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = ContinuousBernoulli(torch.tensor([0.3]))
- >>> m.sample()
- tensor([ 0.2538])
- Args:
- probs (Number, Tensor): (0,1) valued parameters
- logits (Number, Tensor): real valued parameters whose sigmoid matches 'probs'
- [1] The continuous Bernoulli: fixing a pervasive error in variational
- autoencoders, Loaiza-Ganem G and Cunningham JP, NeurIPS 2019.
- https://arxiv.org/abs/1907.06845
- """
- arg_constraints = {'probs': constraints.unit_interval,
- 'logits': constraints.real}
- support = constraints.unit_interval
- _mean_carrier_measure = 0
- has_rsample = True
- def __init__(self, probs=None, logits=None, lims=(0.499, 0.501), validate_args=None):
- if (probs is None) == (logits is None):
- raise ValueError("Either `probs` or `logits` must be specified, but not both.")
- if probs is not None:
- is_scalar = isinstance(probs, Number)
- self.probs, = broadcast_all(probs)
- # validate 'probs' here if necessary as it is later clamped for numerical stability
- # close to 0 and 1, later on; otherwise the clamped 'probs' would always pass
- if validate_args is not None:
- if not self.arg_constraints['probs'].check(getattr(self, 'probs')).all():
- raise ValueError("The parameter {} has invalid values".format('probs'))
- self.probs = clamp_probs(self.probs)
- else:
- is_scalar = isinstance(logits, Number)
- self.logits, = broadcast_all(logits)
- self._param = self.probs if probs is not None else self.logits
- if is_scalar:
- batch_shape = torch.Size()
- else:
- batch_shape = self._param.size()
- self._lims = lims
- super().__init__(batch_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(ContinuousBernoulli, _instance)
- new._lims = self._lims
- batch_shape = torch.Size(batch_shape)
- if 'probs' in self.__dict__:
- new.probs = self.probs.expand(batch_shape)
- new._param = new.probs
- if 'logits' in self.__dict__:
- new.logits = self.logits.expand(batch_shape)
- new._param = new.logits
- super(ContinuousBernoulli, new).__init__(batch_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def _new(self, *args, **kwargs):
- return self._param.new(*args, **kwargs)
- def _outside_unstable_region(self):
- return torch.max(torch.le(self.probs, self._lims[0]),
- torch.gt(self.probs, self._lims[1]))
- def _cut_probs(self):
- return torch.where(self._outside_unstable_region(),
- self.probs,
- self._lims[0] * torch.ones_like(self.probs))
- def _cont_bern_log_norm(self):
- '''computes the log normalizing constant as a function of the 'probs' parameter'''
- cut_probs = self._cut_probs()
- cut_probs_below_half = torch.where(torch.le(cut_probs, 0.5),
- cut_probs,
- torch.zeros_like(cut_probs))
- cut_probs_above_half = torch.where(torch.ge(cut_probs, 0.5),
- cut_probs,
- torch.ones_like(cut_probs))
- log_norm = torch.log(torch.abs(torch.log1p(-cut_probs) - torch.log(cut_probs))) - torch.where(
- torch.le(cut_probs, 0.5),
- torch.log1p(-2.0 * cut_probs_below_half),
- torch.log(2.0 * cut_probs_above_half - 1.0))
- x = torch.pow(self.probs - 0.5, 2)
- taylor = math.log(2.0) + (4.0 / 3.0 + 104.0 / 45.0 * x) * x
- return torch.where(self._outside_unstable_region(), log_norm, taylor)
- @property
- def mean(self):
- cut_probs = self._cut_probs()
- mus = cut_probs / (2.0 * cut_probs - 1.0) + 1.0 / (torch.log1p(-cut_probs) - torch.log(cut_probs))
- x = self.probs - 0.5
- taylor = 0.5 + (1.0 / 3.0 + 16.0 / 45.0 * torch.pow(x, 2)) * x
- return torch.where(self._outside_unstable_region(), mus, taylor)
- @property
- def stddev(self):
- return torch.sqrt(self.variance)
- @property
- def variance(self):
- cut_probs = self._cut_probs()
- vars = cut_probs * (cut_probs - 1.0) / torch.pow(1.0 - 2.0 * cut_probs, 2) + 1.0 / torch.pow(
- torch.log1p(-cut_probs) - torch.log(cut_probs), 2)
- x = torch.pow(self.probs - 0.5, 2)
- taylor = 1.0 / 12.0 - (1.0 / 15.0 - 128. / 945.0 * x) * x
- return torch.where(self._outside_unstable_region(), vars, taylor)
- @lazy_property
- def logits(self):
- return probs_to_logits(self.probs, is_binary=True)
- @lazy_property
- def probs(self):
- return clamp_probs(logits_to_probs(self.logits, is_binary=True))
- @property
- def param_shape(self):
- return self._param.size()
- def sample(self, sample_shape=torch.Size()):
- shape = self._extended_shape(sample_shape)
- u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
- with torch.no_grad():
- return self.icdf(u)
- def rsample(self, sample_shape=torch.Size()):
- shape = self._extended_shape(sample_shape)
- u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
- return self.icdf(u)
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- logits, value = broadcast_all(self.logits, value)
- return -binary_cross_entropy_with_logits(logits, value, reduction='none') + self._cont_bern_log_norm()
- def cdf(self, value):
- if self._validate_args:
- self._validate_sample(value)
- cut_probs = self._cut_probs()
- cdfs = (torch.pow(cut_probs, value) * torch.pow(1.0 - cut_probs, 1.0 - value)
- + cut_probs - 1.0) / (2.0 * cut_probs - 1.0)
- unbounded_cdfs = torch.where(self._outside_unstable_region(), cdfs, value)
- return torch.where(
- torch.le(value, 0.0),
- torch.zeros_like(value),
- torch.where(torch.ge(value, 1.0), torch.ones_like(value), unbounded_cdfs))
- def icdf(self, value):
- cut_probs = self._cut_probs()
- return torch.where(
- self._outside_unstable_region(),
- (torch.log1p(-cut_probs + value * (2.0 * cut_probs - 1.0))
- - torch.log1p(-cut_probs)) / (torch.log(cut_probs) - torch.log1p(-cut_probs)),
- value)
- def entropy(self):
- log_probs0 = torch.log1p(-self.probs)
- log_probs1 = torch.log(self.probs)
- return self.mean * (log_probs0 - log_probs1) - self._cont_bern_log_norm() - log_probs0
- @property
- def _natural_params(self):
- return (self.logits, )
- def _log_normalizer(self, x):
- """computes the log normalizing constant as a function of the natural parameter"""
- out_unst_reg = torch.max(torch.le(x, self._lims[0] - 0.5),
- torch.gt(x, self._lims[1] - 0.5))
- cut_nat_params = torch.where(out_unst_reg,
- x,
- (self._lims[0] - 0.5) * torch.ones_like(x))
- log_norm = torch.log(torch.abs(torch.exp(cut_nat_params) - 1.0)) - torch.log(torch.abs(cut_nat_params))
- taylor = 0.5 * x + torch.pow(x, 2) / 24.0 - torch.pow(x, 4) / 2880.0
- return torch.where(out_unst_reg, log_norm, taylor)
|