123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- import torch
- from torch.distributions import constraints
- from torch.distributions.distribution import Distribution
- from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
- __all__ = ['Binomial']
- def _clamp_by_zero(x):
- # works like clamp(x, min=0) but has grad at 0 is 0.5
- return (x.clamp(min=0) + x - x.clamp(max=0)) / 2
- class Binomial(Distribution):
- r"""
- Creates a Binomial distribution parameterized by :attr:`total_count` and
- either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be
- broadcastable with :attr:`probs`/:attr:`logits`.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
- >>> x = m.sample()
- tensor([ 0., 22., 71., 100.])
- >>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8]))
- >>> x = m.sample()
- tensor([[ 4., 5.],
- [ 7., 6.]])
- Args:
- total_count (int or Tensor): number of Bernoulli trials
- probs (Tensor): Event probabilities
- logits (Tensor): Event log-odds
- """
- arg_constraints = {'total_count': constraints.nonnegative_integer,
- 'probs': constraints.unit_interval,
- 'logits': constraints.real}
- has_enumerate_support = True
- def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
- if (probs is None) == (logits is None):
- raise ValueError("Either `probs` or `logits` must be specified, but not both.")
- if probs is not None:
- self.total_count, self.probs, = broadcast_all(total_count, probs)
- self.total_count = self.total_count.type_as(self.probs)
- else:
- self.total_count, self.logits, = broadcast_all(total_count, logits)
- self.total_count = self.total_count.type_as(self.logits)
- self._param = self.probs if probs is not None else self.logits
- batch_shape = self._param.size()
- super().__init__(batch_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(Binomial, _instance)
- batch_shape = torch.Size(batch_shape)
- new.total_count = self.total_count.expand(batch_shape)
- if 'probs' in self.__dict__:
- new.probs = self.probs.expand(batch_shape)
- new._param = new.probs
- if 'logits' in self.__dict__:
- new.logits = self.logits.expand(batch_shape)
- new._param = new.logits
- super(Binomial, new).__init__(batch_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def _new(self, *args, **kwargs):
- return self._param.new(*args, **kwargs)
- @constraints.dependent_property(is_discrete=True, event_dim=0)
- def support(self):
- return constraints.integer_interval(0, self.total_count)
- @property
- def mean(self):
- return self.total_count * self.probs
- @property
- def mode(self):
- return ((self.total_count + 1) * self.probs).floor().clamp(max=self.total_count)
- @property
- def variance(self):
- return self.total_count * self.probs * (1 - self.probs)
- @lazy_property
- def logits(self):
- return probs_to_logits(self.probs, is_binary=True)
- @lazy_property
- def probs(self):
- return logits_to_probs(self.logits, is_binary=True)
- @property
- def param_shape(self):
- return self._param.size()
- def sample(self, sample_shape=torch.Size()):
- shape = self._extended_shape(sample_shape)
- with torch.no_grad():
- return torch.binomial(self.total_count.expand(shape), self.probs.expand(shape))
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- log_factorial_n = torch.lgamma(self.total_count + 1)
- log_factorial_k = torch.lgamma(value + 1)
- log_factorial_nmk = torch.lgamma(self.total_count - value + 1)
- # k * log(p) + (n - k) * log(1 - p) = k * (log(p) - log(1 - p)) + n * log(1 - p)
- # (case logit < 0) = k * logit - n * log1p(e^logit)
- # (case logit > 0) = k * logit - n * (log(p) - log(1 - p)) + n * log(p)
- # = k * logit - n * logit - n * log1p(e^-logit)
- # (merge two cases) = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|)
- normalize_term = (self.total_count * _clamp_by_zero(self.logits)
- + self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits)))
- - log_factorial_n)
- return value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term
- def entropy(self):
- total_count = int(self.total_count.max())
- if not self.total_count.min() == total_count:
- raise NotImplementedError("Inhomogeneous total count not supported by `entropy`.")
- log_prob = self.log_prob(self.enumerate_support(False))
- return -(torch.exp(log_prob) * log_prob).sum(0)
- def enumerate_support(self, expand=True):
- total_count = int(self.total_count.max())
- if not self.total_count.min() == total_count:
- raise NotImplementedError("Inhomogeneous total count not supported by `enumerate_support`.")
- values = torch.arange(1 + total_count, dtype=self._param.dtype, device=self._param.device)
- values = values.view((-1,) + (1,) * len(self._batch_shape))
- if expand:
- values = values.expand((-1,) + self._batch_shape)
- return values
|