123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- from typing import Dict, List, Optional
- import torch
- import torch.optim._functional as F
- from torch import Tensor
- __all__: List[str] = []
- # Define a TorchScript compatible Functional Adagrad Optimizer
- # where we use these optimizer in a functional way.
- # Instead of using the `param.grad` when updating parameters,
- # we explicitly let the user pass gradients to the `step` function
- # this is so that we could separate the gradients and parameters
- # and allow multithreaded trainer to update the parameters
- # without data traces on accumulating to the same .grad.
- # NOTE: This should be only used by distributed optimizer internals
- # and not meant to expose to the user.
- @torch.jit.script
- class _FunctionalAdagrad:
- def __init__(
- self,
- params: List[Tensor],
- lr: float = 1e-2,
- lr_decay: float = 0.0,
- weight_decay: float = 0.0,
- initial_accumulator_value: float = 0.0,
- warmup_lr_multiplier: float = 1.0,
- warmup_num_iters: float = 0.0,
- eps: float = 1e-10,
- coalesce_grad: bool = True,
- foreach: bool = False,
- maximize: bool = False,
- _allow_empty_param_list: bool = False,
- ):
- self.defaults = {
- "lr": lr,
- "lr_decay": lr_decay,
- "eps": eps,
- "weight_decay": weight_decay,
- "initial_accumulator_value": initial_accumulator_value,
- "warmup_lr_multiplier": warmup_lr_multiplier,
- "warmup_num_iters": warmup_num_iters,
- }
- self.coalesce_grad = coalesce_grad
- self.foreach = foreach
- self.maximize = maximize
- self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
- if len(params) == 0 and not _allow_empty_param_list:
- raise ValueError("optimizer got an empty parameter list")
- # NOTE: we only have one param_group and don't allow user to add additional
- # param group as it's not a common use case.
- self.param_group = {"params": params}
- # TODO: no union or any types in TorchScript, make step a scalar tensor instead
- # This is also needed by if we want to share_memory on the step across processes
- for p in self.param_group["params"]:
- self.state[p] = {
- "sum": torch.full_like(p.data, initial_accumulator_value),
- "step": torch.tensor(0.0),
- }
- def step(self, gradients: List[Optional[Tensor]]):
- params = self.param_group["params"]
- params_with_grad = []
- grads = []
- state_sums = []
- state_steps: List[Tensor] = []
- if len(params) != len(gradients):
- raise ValueError(
- "the gradients passed in does not equal to the size of the parameters!"
- + f"Params length: {len(params)}. "
- + f"Gradients length: {len(gradients)}"
- )
- has_sparse_grad = False
- for param, gradient in zip(self.param_group["params"], gradients):
- if gradient is not None:
- if gradient.is_sparse:
- has_sparse_grad = True
- params_with_grad.append(param)
- grads.append(gradient)
- state = self.state[param]
- state_sums.append(state["sum"])
- state_steps.append(state["step"])
- with torch.no_grad():
- F.adagrad(
- params,
- grads,
- state_sums,
- state_steps,
- lr=self.defaults["lr"],
- weight_decay=self.defaults["weight_decay"],
- lr_decay=self.defaults["lr_decay"],
- eps=self.defaults["eps"],
- has_sparse_grad=has_sparse_grad,
- foreach=self.foreach,
- maximize=self.maximize,
- )
|