1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741 |
- import copy
- import functools
- import warnings
- from dataclasses import dataclass
- from typing import (
- Any,
- cast,
- Dict,
- Iterable,
- Iterator,
- List,
- NamedTuple,
- Optional,
- Sequence,
- Set,
- Tuple,
- Union,
- )
- import torch
- import torch.distributed as dist
- import torch.distributed.fsdp._traversal_utils as traversal_utils
- import torch.nn as nn
- from torch.distributed._shard.sharded_tensor import ShardedTensor
- from torch.distributed.fsdp._common_utils import (
- _apply_to_modules,
- _FSDPState,
- _get_module_fsdp_state_if_fully_sharded_module,
- _get_param_to_fqns,
- _module_handles,
- clean_tensor_name,
- )
- from torch.distributed.fsdp._fsdp_extensions import _ext_chunk_tensor
- from torch.distributed.fsdp._runtime_utils import _clear_grads_if_needed, _lazy_init
- from torch.distributed.fsdp._shard_utils import _gather_state_dict
- from torch.distributed.fsdp.api import ShardingStrategy
- from torch.distributed.fsdp.flat_param import FlatParameter, FlatParamHandle
- @dataclass
- class FSDPParamInfo:
- state: _FSDPState
- flat_param: FlatParameter
- param_indices: Dict[str, int]
- def sorted_items(dictionary: Dict[str, Any]) -> Iterator[Tuple[str, Any]]:
- keys = sorted(dictionary.keys())
- for k in keys:
- yield k, dictionary[k]
- class _ConsolidatedOptimState:
- """
- This holds the consolidated optimizer state on the target rank. Positive-
- dimension tensor state is communicated across ranks, while zero-dimension
- tensor state and non-tensor state is taken directly from the target rank.
- PyTorch version 1.12 moved to using zero-dimension tensors for scalar
- values, but user implemented optimizers may still use float (i.e. a
- non-tensor). Thus, we support both and handle them identically.
- Attributes:
- tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension
- tensor state name to the unsharded flattened tensor representing
- the state.
- zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero-
- dimension tensor state name to its value.
- non_tensor_state (Dict[str, Any]): Mapping from non-tensor state
- name to its value.
- """
- tensor_state: Dict[str, torch.Tensor] = {}
- zero_dim_tensor_state: Dict[str, torch.Tensor] = {}
- non_tensor_state: Dict[str, Any] = {}
- class _PosDimTensorInfo(NamedTuple):
- """
- Meatadata for positive-dimension tensors used internally for
- :meth:`scatter_full_optim_state_dict`.
- Attributes:
- shape (torch.Size): Sharded tensor shape (which is equal to the
- unsharded tensor shape if the tensor is optimizer state for a
- non-FSDP parameter and is hence not sharded).
- dtype (torch.dtype): Data type of the tensor.
- """
- shape: torch.Size
- dtype: torch.dtype
- class _OptimStateKey(NamedTuple):
- """
- This represents an optimizer state key that may be used commonly across
- ranks. It is based on the unflattened parameter names rather than parameter
- IDs to make it indepenendent of each rank's own optimizer construction.
- """
- unflat_param_names: Tuple[str, ...]
- is_fsdp_managed: bool
- def _unflatten_optim_state(
- fsdp_param_info: FSDPParamInfo,
- flat_param_state: Dict[str, Any],
- to_save: bool,
- shard_state: bool,
- ) -> List[Dict[str, Any]]:
- """
- Unflattens the optimizer state, consisting of the "state" part and the
- "param_groups" part. Unflattening the "state" part involves consolidating
- the state on the target rank and remapping from flattened to unflattened
- parameter IDs, and the "param_groups" part only involves remapping from
- flattened to unflattened parameter IDs.
- Args:
- fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
- parameter.
- flat_param_state (Dict[str, Any]): Entry for the flattened parameter
- in the "state" part of the optimizer state dict.
- to_save (bool): Whether to save the state on this rank.
- Returns:
- List[Dict[str, Any]]: A :class:`list` holding the entries in the
- "state" part of the optimizer state dict corresponding to the
- unflattened parameters comprising the flattened parameter if on the
- target rank or an empty :class:`list` otherwise. The final optimizer
- state dict will need to map these entries using the proper unflattened
- parameter IDs.
- """
- assert (
- not shard_state or to_save
- ), "If ``shard_state`` is True, ``to_save`` has to be True."
- consolidated_state = _communicate_optim_state(
- fsdp_param_info,
- flat_param_state,
- )
- if to_save:
- unflat_param_state = _unflatten_communicated_optim_state(
- fsdp_param_info,
- consolidated_state,
- shard_state,
- )
- for optim_state in unflat_param_state:
- for key in list(optim_state.keys()):
- state = optim_state[key]
- if isinstance(state, torch.Tensor):
- optim_state[key] = state.cpu()
- return unflat_param_state
- else:
- return []
- def _is_zero_dim_tensor(x: Any) -> bool:
- return torch.is_tensor(x) and x.dim() == 0
- def _communicate_optim_state(
- fsdp_param_info: FSDPParamInfo,
- flat_param_state: Dict[str, Any],
- ) -> _ConsolidatedOptimState:
- """
- Communicates the optimizer state for a flattened parameter across ranks.
- All ranks will hold the entire non-sharded optimizer state on GPU.
- If ``N`` is the number of tensor optimizer states in the optimizer state
- dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1``
- otherwise (where the plus 1 comes from all-gathering the padding per rank).
- Args:
- fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
- parameter.
- flat_param_state (Dict[str, Any]): The entry in the "state" part of the
- optimizer state dict corresponding to the flattened parameter.
- Returns:
- ConsolidatedOptimState: Consolidated optimizer state for the target
- flattened parameter.
- """
- fsdp_state = fsdp_param_info.state
- flat_param = fsdp_param_info.flat_param
- state = _ConsolidatedOptimState()
- tensor_state, zero_dim_tensor_state, non_tensor_state = (
- state.tensor_state,
- state.zero_dim_tensor_state,
- state.non_tensor_state,
- )
- for state_name, value in sorted_items(flat_param_state):
- # Positive-dimension tensor state: communicate across ranks
- if torch.is_tensor(value) and value.dim() > 0:
- # If the parameter is not sharded, then neither is the
- # positive-dimension tensor state, so no need to communicate it --
- # we take the target rank's value
- if (
- fsdp_state.world_size == 1
- or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
- ):
- tensor_state[state_name] = value
- continue
- if not value.is_cuda:
- value = value.to(fsdp_state.compute_device)
- # Assume that positive-dimension tensor optimizer state
- # has the same shape as the sharded flattened parameter
- buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined]
- tensor_buffer = value.new_zeros(*buffer_size)
- dist.all_gather_into_tensor(
- tensor_buffer, value, group=fsdp_state.process_group
- )
- torch.cuda.synchronize()
- unpadded_numel = cast(
- nn.Parameter, flat_param._unpadded_unsharded_size
- ).numel()
- tensor_state[state_name] = tensor_buffer[:unpadded_numel]
- # Zero-dimension tensor state and non-tensor state: take this rank's
- # value directly
- else:
- if _is_zero_dim_tensor(value):
- zero_dim_tensor_state[state_name] = value
- else:
- non_tensor_state[state_name] = value
- return state
- def _unflatten_communicated_optim_state(
- fsdp_param_info: FSDPParamInfo,
- state: _ConsolidatedOptimState,
- shard_state: bool,
- ) -> List[Dict[str, Any]]:
- """
- Unflattens the communicated optimizer state (given by ``tensor_state``,
- ``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flattened
- parameter. This should only be called on the target rank.
- Args:
- fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
- parameter.
- state (_ConsolidatedOptimState): Consolidated optimizer state.
- Returns:
- List[Dict[str, Any]]: A :class:`list` holding the entries in the
- "state" part of the optimizer state dict corresponding to the
- unflattened parameters comprising the flattened parameter. The final
- optimizer state dict will need to map these entries using the proper
- unflattened parameter IDs.
- """
- fsdp_state = fsdp_param_info.state
- flat_param = fsdp_param_info.flat_param
- unflat_param_state: List[Dict[str, Any]] = []
- flat_param_views: Dict[str, Iterator] = {}
- num_unflat_params = flat_param._num_params
- tensor_state, zero_dim_tensor_state, non_tensor_state = (
- state.tensor_state,
- state.zero_dim_tensor_state,
- state.non_tensor_state,
- )
- for _ in range(num_unflat_params):
- unflat_state_param = {}
- # Add positive-dimension tensor state: unflatten with views
- for state_name, flat_tensor in sorted_items(tensor_state):
- views_generated = state_name in flat_param_views
- if not views_generated:
- views = FlatParamHandle._get_unflat_views(flat_param, flat_tensor)
- flat_param_views[state_name] = views
- else:
- views = flat_param_views[state_name]
- optim_state: Union[torch.Tensor, ShardedTensor] = next(views)
- if shard_state:
- assert fsdp_state.process_group is not None
- optim_state = _ext_chunk_tensor(
- optim_state,
- fsdp_state.rank,
- fsdp_state.world_size,
- torch.cuda.device_count(),
- fsdp_state.process_group,
- )
- unflat_state_param[state_name] = optim_state
- # Add zero-dimension tensor state: take the target rank's value
- for state_name, zero_dim_tensor in sorted_items(zero_dim_tensor_state):
- unflat_state_param[state_name] = zero_dim_tensor
- # Add non-tensor state: take the target rank's value
- for state_name, non_tensor in sorted_items(non_tensor_state):
- unflat_state_param[state_name] = non_tensor
- unflat_param_state.append(unflat_state_param)
- return unflat_param_state
- def _flatten_optim_state_dict(
- optim_state_dict: Dict[str, Any],
- model: nn.Module,
- shard_state: bool,
- use_orig_params: bool = False,
- optim: Optional[torch.optim.Optimizer] = None,
- ) -> Dict[str, Any]:
- """
- Flattens the full optimizer state dict, still keying by unflattened
- parameter names. If ``shard_state=True``, then FSDP-managed
- ``FlatParameter`` 's optimizer states are sharded, and otherwise, they are
- kept unsharded.
- If ``use_orig_params`` is True, each rank will have all FSDP-managed
- parameters but some of these parameters may be empty due to the sharding.
- For a regular optim.Optimizer, states for those empty parameters will
- not be initialized. So, when aggregating the FQNs across ranks, no assert
- will be raised on a rank even if it does not have all the states -- it is
- valid and FSDP know how to aggregate them. However, FSDP has to ignore
- handling those parameters that are not managed by FSDP and do not exist on
- the local rank -- it is managed by other parallelism and FSDP does not
- know ho to handle/aggregate them.
- Note that ``_flatten_tensor_optim_state`` does not need ``optim`` to
- flatten/shard the state. However, NamedOptimizer and KeyedOptimizer require
- all the states even if the corresponding parameters are empty. To this end,
- ``optim`` will be used to to get the initial state of the empty parameters.
- ``optim`` should only be non-None if the ``optim` is KeyedOptimizer or
- NamedOptimizer.
- Returns:
- Dict[str, Any]: The flattened optimizer state dict.
- """
- unflat_osd = optim_state_dict
- if "state" not in unflat_osd or "param_groups" not in unflat_osd:
- raise ValueError(
- '`optim_state_dict` must have the keys "state" and '
- '"param_groups" to be a valid optimizer state dict'
- )
- param_to_fqns = _get_param_to_fqns(model)
- fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
- # Construct the "state" part
- flat_osd_state: Dict[Union[_OptimStateKey, str], Any] = {}
- unflat_osd_state = unflat_osd["state"]
- all_state_keys = set(unflat_osd_state.keys())
- # local_state_dict is used to construct states of empty parameters.
- # This should only be used if is_named_optimizer=True.
- local_state_dict: Dict[str, Any] = {}
- local_state_clean_fqns: Dict[str, str] = {}
- if optim is not None:
- local_state_dict = optim.state_dict()["state"]
- for fqn in local_state_dict.keys():
- clean_fqn = clean_tensor_name(fqn)
- local_state_clean_fqns[clean_fqn] = fqn
- for param, unflat_param_names in param_to_fqns.items():
- fqn = unflat_param_names[0]
- if fqn not in unflat_osd_state:
- continue
- all_state_keys.difference_update(unflat_param_names)
- if fqn in fqn_to_fsdp_param_info:
- fsdp_param_info = fqn_to_fsdp_param_info[fqn]
- if use_orig_params:
- assert (
- shard_state
- ), "If use_orig_params is True, shard_state must be True."
- flat_state = _shard_orig_param_state(
- fsdp_param_info,
- fqn,
- unflat_osd_state[fqn],
- )
- else:
- flat_state = _flatten_optim_state(
- fsdp_param_info,
- unflat_osd_state,
- unflat_param_names,
- shard_state,
- )
- key = _OptimStateKey(tuple(unflat_param_names), True)
- # Only include non-empty states since as expected by
- # `torch.optim.Optimizer` s unless the optimizer is KeyedOptimizer
- # or NamedOptimizer.
- if flat_state:
- flat_osd_state[key] = flat_state
- elif optim is not None: # NamedOptimizer or KeyedOptimizer case.
- assert len(unflat_param_names) == 1
- local_wrapped_fqn = local_state_clean_fqns.get(fqn, "")
- if local_wrapped_fqn:
- flat_osd_state[key] = copy.deepcopy(
- local_state_dict[local_wrapped_fqn]
- )
- else: # do not flatten non-FSDP parameters' states
- assert len(unflat_param_names) == 1
- key = _OptimStateKey(tuple(unflat_param_names), False)
- flat_osd_state[key] = copy.copy(unflat_osd_state[fqn])
- # Handle user-defined state, states that are not accosiated with parameters.
- for key in all_state_keys:
- flat_osd_state[key] = copy.copy(unflat_osd_state[key])
- # Construct the "param_groups" part -- copy as is since it will be
- # rekeyed later according to the target rank's optimizer
- flat_osd_param_groups = copy.deepcopy(unflat_osd["param_groups"])
- return {"state": flat_osd_state, "param_groups": flat_osd_param_groups}
- def _flatten_optim_state(
- fsdp_param_info: FSDPParamInfo,
- unflat_osd_state: Dict[str, Dict[str, Any]],
- unflat_param_names: List[str],
- shard_state: bool,
- ) -> Dict[str, Any]:
- """
- Flattens the optimizer state in ``full_optim_state_dict`` for a single
- flattened parameter in ``fsdp_param_info`` corresponding to the unflattened
- parameter names in ``unflat_param_names``.
- Args:
- unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the
- optimizer state dict corresponding to the unflattened parameters.
- unflat_param_names (List[str]): A :class:`list` of unflattened
- parameter names corresponding to the flattened parameter
- ``flat_param``.
- fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
- parameter.
- shard_state (bool): Whether to shard flattened positive-dimension
- tensor state; if ``False``, then the full flattened tensor is
- kept in the returned :class:`dict.
- Returns:
- Dict[str, Any]: A :class:`dict` mapping state names to their values for
- a particular flattened parameter. The sharded optimizer state dict's
- "state" part will map a key to this returned value.
- """
- fsdp_state = fsdp_param_info.state
- flat_param = fsdp_param_info.flat_param
- num_unflat_params = len(unflat_param_names)
- assert num_unflat_params > 0, (
- "Expects at least one unflattened parameter corresponding to the "
- "flattened parameter"
- )
- unflat_param_shapes = flat_param._shapes
- num_unflat_param_shapes = len(unflat_param_shapes)
- assert (
- num_unflat_params == num_unflat_param_shapes
- ), f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}"
- # Check if these unflattened parameters have any optimizer state
- has_state = [
- bool(unflat_param_name in unflat_osd_state)
- for unflat_param_name in unflat_param_names
- ]
- # If none of the unflattened parameters comprising this flattened parameter
- # have any state, then we do not want an entry in the optimizer state dict
- if not any(has_state):
- return {} # no need to flatten any state
- # There may still be some unflattened parameters with state and some
- # without
- unflat_param_states = [
- _gather_state_dict(
- unflat_osd_state[unflat_param_name], pg=fsdp_state.process_group
- )
- if unflat_param_name in unflat_osd_state
- else None
- for unflat_param_name in unflat_param_names
- ]
- # Check that the unflattened parameters have the same state names
- state_names = None
- for unflat_param_state in unflat_param_states:
- if unflat_param_state is None:
- continue
- if state_names is None:
- state_names = set(unflat_param_state.keys())
- else:
- if state_names != set(unflat_param_state.keys()):
- raise ValueError(
- "Differing optimizer state names for the unflattened "
- f"parameters: {unflat_param_names}"
- )
- assert state_names is not None
- # Flatten the state
- flat_state: Dict[str, Any] = {}
- for state_name in state_names:
- state_values = [
- unflat_param_state[state_name] if unflat_param_state is not None else None
- for unflat_param_state in unflat_param_states
- ]
- non_none_state_values = [v for v in state_values if v is not None]
- are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True
- for v in non_none_state_values:
- are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0
- are_zero_dim_tensors &= _is_zero_dim_tensor(v)
- are_non_tensors &= not torch.is_tensor(v)
- types = {type(v) for v in non_none_state_values}
- if len(types) != 1 or not (
- are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors
- ):
- raise ValueError(
- f"Differing optimizer state types for state {state_name}, "
- f"values {non_none_state_values}, and unflattened parameter "
- f"names {unflat_param_names}"
- )
- if are_pos_dim_tensors:
- flat_tensor = _flatten_tensor_optim_state(
- state_name,
- state_values,
- unflat_param_names,
- unflat_param_shapes,
- flat_param,
- )
- if shard_state:
- # Shard the flattened tensor immediately to minimize max memory
- # usage
- sharded_flat_tensor, _ = FlatParamHandle._get_shard(
- flat_tensor,
- fsdp_state.rank,
- fsdp_state.world_size,
- )
- flat_state[state_name] = sharded_flat_tensor
- else:
- flat_state[state_name] = flat_tensor
- elif are_zero_dim_tensors:
- flat_state[state_name] = _flatten_zero_dim_tensor_optim_state(
- state_name,
- state_values,
- unflat_param_names,
- )
- else:
- assert are_non_tensors
- flat_state[state_name] = _flatten_non_tensor_optim_state(
- state_name,
- state_values,
- unflat_param_names,
- )
- return flat_state
- def _flatten_tensor_optim_state(
- state_name: str,
- pos_dim_tensors: List[torch.Tensor],
- unflat_param_names: List[str],
- unflat_param_shapes: Sequence[torch.Size],
- flat_param: FlatParameter,
- ) -> torch.Tensor:
- """
- Flattens the positive-dimension tensor optimizer state given by the values
- ``tensors`` for the state ``state_name`` for a single flattened parameter
- ``flat_param`` corresponding to the unflattened parameter names
- ``unflat_param_names`` and unflatted parameter shapes
- ``unflat_param_shapes``. This flattens each unflattened parameter's tensor
- state into one tensor.
- NOTE: We use zero tensors for any unflattened parameters without state
- since some value is required to fill those entries. This assumes that the
- zero tensor is mathematically equivalent to having no state, which is true
- for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all
- optimizers.
- Args:
- state_name (str): Optimizer state name.
- pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor
- optimizer state values for the unflattened parameters corresponding
- to the single flattened parameter.
- unflat_param_names (List[str]): A :class:`list` of unflattened
- parameter names corresponding to the single flattened parameter.
- unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes
- corresponding to the single flattened parameter.
- flat_param (FlatParameter): The flattened parameter.
- Returns:
- torch.Tensor: A flattened tensor containing the optimizer state
- corresponding to ``state_name`` constructed by concatenating the
- unflattened parameter tensor states in ``pos_dim_tensors`` (using zero
- tensors for any unflattened parameters without the state).
- """
- non_none_tensors = [t for t in pos_dim_tensors if t is not None]
- # Check that all are tensors with the same dtype
- dtypes = {t.dtype for t in non_none_tensors}
- if len(dtypes) != 1:
- raise ValueError(
- "All unflattened parameters comprising a single flattened "
- "parameter must have positive-dimension tensor state with the "
- f"same dtype but got dtypes {dtypes} for state {state_name} and "
- f"unflattened parameter names {unflat_param_names}"
- )
- dtype = next(iter(dtypes))
- # Check that each tensor state matches its parameter's shape
- for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes):
- if tensor is None and len(shape) == 0:
- raise ValueError("Flattening a zero-dimension parameter is not supported")
- elif tensor is not None and tensor.shape != shape:
- raise ValueError(
- "Tensor optimizer state does not have same shape as its "
- f"parameter: {tensor.shape} {shape}"
- )
- # Flatten the tensor states: we do not need to add any padding since the
- # flattened optimizer state tensor sharded via `_get_shard()`, which pads
- # the shard as needed (just like for the flattened parameter)
- cpu_device = torch.device("cpu")
- tensors = [
- torch.flatten(state_value.to(cpu_device))
- if state_value is not None
- else torch.flatten(
- torch.zeros(
- size=shape,
- dtype=dtype,
- device=cpu_device,
- )
- )
- for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes)
- ]
- flat_tensor = torch.cat(tensors)
- flat_param_shape = flat_param._unpadded_unsharded_size # type: ignore[attr-defined]
- assert flat_tensor.shape == flat_param_shape, (
- f"tensor optim state: {flat_tensor.shape} "
- f"flattened parameter: {flat_param_shape}"
- )
- return flat_tensor
- def _flatten_zero_dim_tensor_optim_state(
- state_name: str,
- zero_dim_tensors: List[torch.Tensor],
- unflat_param_names: List[str],
- ) -> torch.Tensor:
- """
- Flattens the zero-dimension tensor optimizer state given by the values
- ``zero_dim_tensors`` for the state ``state_name`` for a single flattened
- parameter corresponding to the unflattened parameter names
- ``unflat_param_names`` by enforcing that all tensors are the same and using
- that common value.
- NOTE: The requirement that the tensors are the same across all unflattened
- parameters comprising the flattened parameter is needed to maintain the
- invariant that FSDP performs the same computation as its non-sharded
- equivalent. This means that none of the unflattened parameters can be
- missing this state since imposing a value may differ from having no value.
- For example, for Adam's "step", no value means maximum bias correction,
- while having some positive value means less bias correction.
- Args:
- state_name (str): Optimizer state name.
- zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state
- for the unflattened parameters corresponding to the single
- flattened parameter.
- unflat_param_names (List[str]): A :class:`list` of unflattened
- parameter names corresponding to the single flattened parameter.
- Returns:
- torch.Tensor: A zero-dimensional tensor giving the value of the state
- ``state_name`` for all unflattened parameters corresponding to the
- names ``unflat_param_names``.
- """
- non_none_tensors = [t for t in zero_dim_tensors if t is not None]
- # Enforce that all have the same value and dtype
- values_set = {t.item() if t is not None else None for t in zero_dim_tensors}
- dtypes = {t.dtype if t is not None else None for t in zero_dim_tensors}
- if (
- len(non_none_tensors) != len(zero_dim_tensors)
- or len(values_set) != 1
- or len(dtypes) != 1
- ):
- raise ValueError(
- "All unflattened parameters comprising a single flattened "
- "parameter must have scalar state with the same value and dtype "
- f"but got values {values_set} and dtypes {dtypes} for state "
- f"{state_name} and unflattened parameter names "
- f"{unflat_param_names}"
- )
- value = next(iter(values_set))
- dtype = next(iter(dtypes))
- return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))
- def _flatten_non_tensor_optim_state(
- state_name: str,
- non_tensors: List[Any],
- unflat_param_names: List[str],
- ) -> Any:
- """
- Flattens the non-tensor optimizer state given by the values ``non_tensors``
- for the state ``state_name`` for a single flattened parameter corresponding
- to the unflattened parameter names ``unflat_param_names`` by enforcing that
- all values are the same and using that common value.
- See the note in :func:`_flatten_zero_dim_tensor_optim_state`.
- Args:
- state_name (str): Optimizer state name.
- non_tensors (List[Any]): Non-tensor optimizer state for the unflattened
- parameters corresponding to the single flattened parameter.
- unflat_param_names (List[str]): A :class:`list` of unflattened
- parameter names corresponding to the single flattened parameter.
- Returns:
- Any: A non-tensor giving the value of the state ``state_name`` for all
- unflattened parameters corresponding to the names
- ``unflat_param_names``.
- """
- non_none_non_tensors = [nt for nt in non_tensors if nt is not None]
- # Enforce that all have the same value (same type already checked)
- non_tensor_set = set(non_tensors)
- if len(non_none_non_tensors) != len(non_tensors) or len(non_tensor_set) != 1:
- raise ValueError(
- "All unflattened parameters comprising a single flattened "
- "parameter must have scalar state with the same value and dtype "
- f"but got values {non_tensor_set} for state {state_name} and "
- f"unflattened parameter names {unflat_param_names}"
- )
- non_tensor = next(iter(non_tensor_set))
- return non_tensor
- def _process_pos_dim_tensor_state(
- flat_optim_state_dict: Dict[str, Any],
- world_size: int,
- ) -> Dict[str, Any]:
- """
- Processes positive-dimension tensor states in ``flat_optim_state_dict`` by
- replacing them with metadata. This is done so the processed optimizer state
- dict can be broadcast from rank 0 to all ranks without copying those tensor
- states, and thus, this is meant to only be called on rank 0.
- Args:
- flat_optim_state_dict (Dict[str, Any]): Flattened optimizer state dict
- with the positive-dimension tensor states unsharded.
- Returns:
- Dict[str, Any]: The flattened optimizer state dict with positive-
- dimension tensor states replaced by metadata.
- """
- flat_osd = flat_optim_state_dict # alias
- no_tensor_osd: Dict[str, Any] = {"state": {}}
- for key, param_state in flat_osd["state"].items():
- no_tensor_osd["state"][key] = {}
- for state_name, value in sorted_items(param_state):
- is_pos_dim_tensor_state = torch.is_tensor(value) and value.dim() > 0
- if not is_pos_dim_tensor_state:
- no_tensor_osd["state"][key][state_name] = value
- continue
- if key.is_fsdp_managed: # FSDP parameter
- sharded_size = FlatParamHandle._get_sharded_size(
- value, rank=0, world_size=world_size
- )
- assert len(sharded_size) == 1, f"{sharded_size}"
- info = _PosDimTensorInfo(sharded_size, value.dtype)
- else: # non-FSDP parameter
- info = _PosDimTensorInfo(value.shape, value.dtype)
- no_tensor_osd["state"][key][state_name] = info
- no_tensor_osd["param_groups"] = flat_osd["param_groups"]
- return no_tensor_osd
- def _broadcast_processed_optim_state_dict(
- processed_optim_state_dict: Optional[Dict[str, Any]],
- rank: int,
- group,
- ) -> Dict[str, Any]:
- """
- Broadcasts the processed optimizer state dict from rank 0 to all ranks.
- Args:
- processed_optim_state_dict (Optional[Dict[str, Any]]): The flattened
- optimizer state dict with positive-dimension tensor states replaced
- with metadata if on rank 0; ignored otherwise.
- Returns:
- Dict[str, Any]: The processed optimizer state dict.
- """
- # Broadcast the two data structures rank 0 to all ranks
- obj_list = [processed_optim_state_dict] if rank == 0 else [None]
- dist.broadcast_object_list(obj_list, src=0, group=group)
- processed_optim_state_dict = obj_list[0] # type: ignore[assignment]
- assert processed_optim_state_dict is not None
- # Keep zero-dimension tensors on CPU
- return processed_optim_state_dict
- def _broadcast_pos_dim_tensor_states(
- processed_optim_state_dict: Dict[str, Any],
- flat_optim_state_dict: Optional[Dict[str, Any]],
- rank: int,
- world_size: int,
- group,
- broadcast_device: torch.device,
- ) -> Dict[str, Any]:
- """
- Takes ``processed_optim_state_dict``, which has metadata in place of
- positive-dimension tensor states, and broadcasts those tensor states from
- rank 0 to all ranks. For tensor states corresponding to FSDP parameters,
- rank 0 shards the tensor and broadcasts shard-by-shard, and for tensor
- states corresponding to non-FSDP parameters, rank 0 broadcasts the full
- tensor.
- Args:
- processed_optim_state_dict (Dict[str, Any]): The flattened optimizer
- state dict with positive-dimension tensor states replaced with
- metadata; this should be returned by
- :meth:`_process_pos_dim_tensor_state` and non-empty on all ranks.
- flat_optim_state_dict (Optional[Dict[str, Any]]): The flattened
- unsharded optimizer state dict with the actual positive-dimension
- tensor states if on rank 0; ignored on nonzero ranks.
- Returns:
- Dict[str, Any]: The optimizer state dict with the positive-dimension
- tensor state correctly populated via ``broadcast()`` s from rank 0.
- """
- assert (
- rank != 0 or flat_optim_state_dict is not None
- ), "Expects rank 0 to pass in the flattened optimizer state dict"
- no_tensor_osd = processed_optim_state_dict # alias
- flat_osd = flat_optim_state_dict # alias
- for key, param_state in no_tensor_osd["state"].items():
- for state_name, value in sorted_items(param_state):
- is_pos_dim_tensor_state = isinstance(value, _PosDimTensorInfo)
- if not is_pos_dim_tensor_state:
- continue
- if rank == 0:
- assert flat_osd is not None
- unsharded_tensor = flat_osd["state"][key][state_name]
- else:
- unsharded_tensor = None
- shape, dtype = value.shape, value.dtype
- if key.is_fsdp_managed: # FSDP parameter
- _broadcast_sharded_pos_dim_tensor_state(
- unsharded_tensor,
- param_state,
- state_name,
- shape,
- dtype,
- broadcast_device,
- rank,
- world_size,
- group,
- ) # modify `param_state` destructively
- else: # non-FSDP parameter
- _broadcast_unsharded_pos_dim_tensor_state(
- unsharded_tensor,
- param_state,
- state_name,
- shape,
- dtype,
- broadcast_device,
- rank,
- group,
- ) # modify `param_state` destructively
- return no_tensor_osd
- def _broadcast_sharded_pos_dim_tensor_state(
- unsharded_tensor: Optional[torch.Tensor],
- param_state: Dict[str, Any],
- state_name: str,
- shape: torch.Size,
- dtype: torch.dtype,
- broadcast_device: torch.device,
- rank: int,
- world_size: int,
- group,
- ) -> None:
- """
- Broadcasts positive-dimension tensor state for the state ``state_name``
- corresponding to an FSDP parameter shard-by-shard, only to be saved on the
- relevant rank. This modifies ``param_state`` destructively.
- Args:
- unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor from which
- to broadcast shards if on rank 0; ignored otherwise.
- shape (torch.Size): Shape of the sharded tensor; same on all ranks.
- """
- get_shard: Optional[functools.partial[Tuple[torch.Tensor, int]]] = None
- if rank == 0:
- assert (
- unsharded_tensor is not None
- ), "Expects rank 0 to pass in the unsharded tensor"
- get_shard = functools.partial(
- FlatParamHandle._get_shard,
- unsharded_tensor,
- )
- for target_rank in range(1, world_size):
- if rank == 0:
- assert get_shard is not None
- sharded_tensor = get_shard(target_rank, world_size)[0].to(broadcast_device)
- else:
- sharded_tensor = torch.zeros(
- shape,
- requires_grad=False,
- dtype=dtype,
- device=broadcast_device,
- )
- dist.broadcast(sharded_tensor, src=0, group=group)
- # Only keep the shard on the target rank and keep it on the broadcast
- # device, which is typically GPU
- if rank == target_rank:
- param_state[state_name] = sharded_tensor
- else:
- del sharded_tensor
- # Lastly, shard on rank 0
- if rank != 0:
- return
- param_state[state_name] = get_shard(0, world_size)[0].to(broadcast_device) # type: ignore[misc]
- def _broadcast_unsharded_pos_dim_tensor_state(
- unsharded_tensor: Optional[torch.Tensor],
- param_state: Dict[str, Any],
- state_name: str,
- shape: torch.Size,
- dtype: torch.dtype,
- broadcast_device: torch.device,
- rank: int,
- group,
- ) -> None:
- """
- Broadcasts positive-dimension tensor state for the state ``state_name``
- corresponding to an unsharded non-FSDP parameter from rank 0 to all ranks.
- This modifies ``param_state`` destructively.
- Args:
- unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor to
- broadcast if on rank 0; ignored otherwise.
- """
- if rank == 0:
- assert (
- unsharded_tensor is not None
- ), "Expects rank 0 to pass in the unsharded tensor"
- assert (
- shape == unsharded_tensor.shape
- ), f"Shape mismatch: {shape} {unsharded_tensor.shape}"
- assert (
- dtype == unsharded_tensor.dtype
- ), f"dtype mismatch: {dtype} {unsharded_tensor.dtype}"
- unsharded_tensor = unsharded_tensor.to(broadcast_device)
- else:
- unsharded_tensor = torch.zeros(
- shape,
- requires_grad=False,
- dtype=dtype,
- device=broadcast_device,
- )
- dist.broadcast(unsharded_tensor, src=0, group=group)
- # Keep the tensor on the broadcast device, which is typically GPU
- param_state[state_name] = unsharded_tensor
- def _rekey_sharded_optim_state_dict(
- sharded_osd: Dict[str, Any],
- model: nn.Module,
- optim: torch.optim.Optimizer,
- optim_input: Optional[
- Union[
- List[Dict[str, Any]],
- Iterable[nn.Parameter],
- ]
- ],
- using_optim_input: bool,
- is_named_optimizer: bool = False,
- ) -> Dict[str, Any]:
- """
- Rekeys the optimizer state dict from unflattened parameter names to
- flattened parameter IDs according to the calling rank's ``optim``, which
- may be different across ranks. In particular, the unflattened parameter
- names are represented as :class:`_OptimStateKey` s.
- """
- param_to_fqns = _get_param_to_fqns(model)
- flat_param_to_fqn = _get_flat_param_to_fqn(model)
- param_to_param_key: Dict[nn.Parameter, Union[int, str]] = cast(
- Dict[nn.Parameter, Union[int, str]],
- (
- _get_param_to_param_id_from_optim_input(model, optim_input)
- if using_optim_input
- else _get_param_to_param_key(
- optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
- )
- ),
- )
- # All parameter keys in `param_to_param_key` should be in
- # `param_to_fqns` -- strict inequality follows when not all parameters are
- # passed to the optimizer
- assert len(param_to_param_key) <= len(param_to_fqns)
- unflat_param_names_to_flat_param_key: Dict[
- Tuple[str, ...], Union[int, str]
- ] = {} # for "state"
- unflat_param_name_to_flat_param_key: Dict[
- str, Union[int, str]
- ] = {} # for "param_groups"
- for param, unflat_param_names in param_to_fqns.items():
- if param not in param_to_param_key:
- # This parameter was not passed to the optimizer
- continue
- flat_param_key = param_to_param_key[param]
- unflat_param_names_to_flat_param_key[tuple(unflat_param_names)] = flat_param_key
- for unflat_param_name in unflat_param_names:
- unflat_param_name_to_flat_param_key[unflat_param_name] = flat_param_key
- sharded_osd_state = sharded_osd["state"]
- rekeyed_osd_state: Dict[Union[str, int], Any] = {}
- for key, param_state in sharded_osd_state.items():
- if isinstance(key, str):
- rekeyed_osd_state[key] = param_state
- continue
- flat_param_key = unflat_param_names_to_flat_param_key.get(
- key.unflat_param_names, key.unflat_param_names
- )
- rekeyed_osd_state[flat_param_key] = param_state
- rekeyed_osd_param_groups: List[Dict[str, Any]] = []
- for unflat_param_group in sharded_osd["param_groups"]:
- flat_param_group = copy.deepcopy(unflat_param_group)
- flat_param_keys = sorted(
- {
- unflat_param_name_to_flat_param_key[unflat_param_name]
- for unflat_param_name in unflat_param_group["params"]
- }
- )
- flat_param_group["params"] = flat_param_keys
- rekeyed_osd_param_groups.append(flat_param_group)
- return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups}
- def _get_param_id_to_param_from_optim_input(
- model: nn.Module,
- optim_input: Optional[
- Union[
- List[Dict[str, Any]],
- Iterable[nn.Parameter],
- ]
- ] = None,
- ) -> Dict[int, nn.Parameter]:
- """
- Constructs a mapping from parameter IDs to parameters. This may be used
- both for models with ``FlatParameter`` s and without.
- NOTE: This method is only preserved for backward compatibility. The method
- :meth:`_get_param_key_to_param` is the preferred code path that does not
- rely on ``optim_input``.
- NOTE: We critically assume that, whether the optimizer input is a list of
- parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
- enumerates the parameter IDs in order. In other words, for a parameter list
- input, the parameter IDs should be in that list order, and for a parameter
- groups input, the parameter IDs should be in order within each parameter
- group and in order across parameter groups.
- Args:
- model (nn.Module): Model whose parameters are passed into the
- optimizer.
- optim_input (Optional[Union[List[Dict[str, Any]],
- Iterable[nn.Parameter]]]): Input passed into the optimizer
- representing either a :class:`list` of parameter groups or an
- iterable of parameters; if ``None``, then this method assumes the
- input was ``model.parameters()``. (Default: ``None``)
- Returns:
- List[nn.Parameter]: Mapping from parameter IDs to parameters,
- where the parameter ID is implicitly the index in the :class:`list`.
- """
- # Assume the standard case of passing `model.parameters()` to the optimizer
- # if `optim_input` is not specified
- if optim_input is None:
- return {pid: param for pid, param in enumerate(model.parameters())}
- try:
- params = cast(List[nn.Parameter], list(optim_input))
- except TypeError as e:
- raise TypeError(
- "Optimizer input should be an iterable of Tensors or dicts, "
- f"but got {optim_input}"
- ) from e
- if len(params) == 0:
- raise ValueError("Optimizer input should not be empty")
- # Check if the optimizer input represents tensors or parameter groups
- all_tensors = True
- all_dicts = True
- for param in params:
- all_tensors &= isinstance(param, torch.Tensor)
- all_dicts &= isinstance(param, dict)
- if not all_tensors and not all_dicts:
- raise TypeError("Optimizer input should be an iterable of Tensors or dicts")
- if all_tensors:
- return {pid: param for pid, param in enumerate(params)}
- assert all_dicts
- param_id_to_param: List[nn.Parameter] = []
- for param_group in params:
- has_params_key = "params" in param_group # type: ignore[operator]
- assert has_params_key, (
- 'A parameter group should map "params" to a list of the '
- "parameters in the group"
- )
- for param in param_group["params"]: # type: ignore[index]
- # Implicitly map `flat_param_id` (current length of the list) to
- # `param`
- param_id_to_param.append(param)
- return {pid: param for pid, param in enumerate(param_id_to_param)}
- def _get_flat_param_to_fqn(model: torch.nn.Module) -> Dict[nn.Parameter, str]:
- def module_fn(module, prefix, flat_param_to_fqn):
- for param_name, param in module.named_parameters(recurse=False):
- if type(param) is not FlatParameter:
- continue
- fqn = clean_tensor_name(prefix + param_name)
- flat_param_to_fqn[param] = fqn
- def return_fn(flat_param_to_fqn):
- return flat_param_to_fqn
- flat_param_to_fqn_ret: Dict[torch.nn.Parameter, str] = {}
- return _apply_to_modules(
- model,
- module_fn,
- return_fn,
- [fqn for fqn, _ in model.named_parameters()],
- flat_param_to_fqn_ret,
- )
- def _get_param_key_to_param(
- optim: torch.optim.Optimizer,
- model: Optional[nn.Module] = None,
- is_named_optimizer: bool = False,
- param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
- flat_param_to_fqn: Optional[Dict[nn.Parameter, str]] = None,
- ) -> Dict[Union[int, str], nn.Parameter]:
- """
- Constructs a mapping from parameter keys to parameters. For the regular
- optimizers, the keys are parameter IDs. For NamedOptimizer, the keys
- are FQNs. This API may be used both for models with ``FlatParameter`` s and
- without.
- """
- clean_fqn_to_curr_fqn: Dict[str, str] = {}
- if is_named_optimizer:
- assert (
- param_to_fqns is not None and flat_param_to_fqn is not None
- ), "The optimizer is a NamedOptimizer, `param_to_fqns` must not be None."
- assert model is not None
- for key, _ in model.named_parameters():
- clean_fqn_to_curr_fqn[clean_tensor_name(key)] = key
- param_key_to_param: Dict[Union[str, int], nn.Parameter] = {}
- pid = 0
- for param_group in optim.param_groups:
- if is_named_optimizer:
- for param in param_group["params"]:
- assert flat_param_to_fqn is not None
- if param in flat_param_to_fqn:
- # FlatParameter case
- key = flat_param_to_fqn[param]
- else:
- assert param_to_fqns is not None
- # use_orig_params case
- assert len(param_to_fqns[param]) == 1
- key = param_to_fqns[param][0]
- key = clean_fqn_to_curr_fqn[key]
- param_key_to_param[key] = param
- else:
- for param in param_group["params"]:
- param_key_to_param[pid] = param
- pid += 1
- return param_key_to_param
- def _get_param_to_param_key(
- optim: torch.optim.Optimizer,
- model: Optional[nn.Module] = None,
- is_named_optimizer: bool = False,
- param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
- flat_param_to_fqn: Optional[Dict[nn.Parameter, str]] = None,
- ) -> Dict[nn.Parameter, Union[int, str]]:
- """
- Constructs the inverse mapping of :func:`_get_param_key_to_param`. This API
- only supports the case where `optim` is a regular optimizer, not NamedOptimizer.
- So the parameter keys will be parameter id.
- """
- param_id_to_param = _get_param_key_to_param(
- optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
- )
- return {param: param_id for param_id, param in param_id_to_param.items()}
- def _get_param_to_param_id_from_optim_input(
- model: nn.Module,
- optim_input: Optional[
- Union[
- List[Dict[str, Any]],
- Iterable[nn.Parameter],
- ]
- ] = None,
- ) -> Dict[nn.Parameter, int]:
- """Constructs the inverse mapping of :func:`_get_param_id_to_param_from_optim_input`."""
- param_id_to_param = _get_param_id_to_param_from_optim_input(model, optim_input)
- return {param: param_id for param_id, param in param_id_to_param.items()}
- def _check_missing_keys_on_rank(
- r0_optim_state_keys: List[_OptimStateKey],
- optim_state_key_to_param_key: Dict[_OptimStateKey, Union[str, int]],
- param_key_to_param: Dict[Union[str, int], nn.Parameter],
- group: Optional[dist.ProcessGroup],
- ) -> None:
- # Ensure that all ranks have at least the optimizer states needed by
- # rank 0's optimizer
- missing_keys: List[_OptimStateKey] = []
- for r0_optim_state_key in r0_optim_state_keys:
- if r0_optim_state_key not in optim_state_key_to_param_key:
- # A parameter from rank 0's optimizer does not exist for this
- # rank's optimizer
- missing_keys.append(r0_optim_state_key)
- continue
- param_key = optim_state_key_to_param_key[r0_optim_state_key]
- if isinstance(param_key, int):
- assert param_key >= 0 and param_key < len(
- param_key_to_param
- ), "Check the `param_key_to_param` construction"
- device = torch.device("cuda", torch.cuda.current_device())
- num_missing = torch.tensor([len(missing_keys)], dtype=torch.int32, device=device)
- dist.all_reduce(num_missing, group=group)
- if num_missing.item() > 0:
- obj_list = [None for _ in range(dist.get_world_size(group))]
- dist.all_gather_object(obj_list, missing_keys, group=group)
- error_msg = (
- "FSDP currently requires each rank to have at least the "
- "optimizer states needed by rank 0's optimizer but some ranks "
- "are missing some of those states"
- )
- for rank, keys in enumerate(obj_list):
- keys = cast(List[_OptimStateKey], keys)
- if len(keys) > 0:
- error_msg += (
- f"\nRank {rank} is missing states for the parameters: "
- f"{[key.unflat_param_names for key in keys]}"
- )
- raise RuntimeError(error_msg)
- def _map_param_key_to_optim_keys(
- optim_state_dict: Dict[str, Any],
- group: Optional[dist.ProcessGroup],
- param_key_to_param: Dict[Union[int, str], nn.Parameter],
- param_to_fqns: Dict[nn.Parameter, List[str]],
- fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
- merge_keys: bool = False,
- ) -> Tuple[List[_OptimStateKey], Dict[_OptimStateKey, Union[int, str]]]:
- """
- Construct the local mapping between the ``_OptimStateKey`` and parameter keys
- and all the ``_OptimStateKey`` across ranks. If ``merge_keys`` is False, rank0
- must contain all the ``_OptimStateKey``, an exception will be raised otherwise.
- Note that ``merge_keys`` should equal to ``use_orig_params``.
- """
- rank = dist.get_rank(group)
- optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]] = {} # local
- all_optim_state_keys: List[_OptimStateKey] = []
- for param_key, param in param_key_to_param.items():
- # Do not include parameters without state to avoid empty mappings
- # just like in normal `torch.optim.Optimizer.state_dict()`
- if param_key not in optim_state_dict["state"]:
- continue
- fqns = param_to_fqns[param]
- is_fsdp_managed = isinstance(param, FlatParameter)
- if is_fsdp_managed:
- assert fqns[0] in fqn_to_fsdp_param_info, (
- fqns[0],
- list(fqn_to_fsdp_param_info.keys()),
- )
- is_fsdp_managed = fqns[0] in fqn_to_fsdp_param_info
- optim_state_key = _OptimStateKey(
- unflat_param_names=tuple(fqns),
- is_fsdp_managed=is_fsdp_managed,
- )
- if rank == 0 or merge_keys:
- all_optim_state_keys.append(optim_state_key)
- optim_state_key_to_param_key[optim_state_key] = param_key
- if merge_keys:
- all_keys: List[List[_OptimStateKey]] = [
- [] for _ in range(dist.get_world_size(group))
- ]
- dist.all_gather_object(all_keys, all_optim_state_keys, group=group)
- merge_all_optim_state_keys = [
- key for local_keys in all_keys for key in local_keys
- ]
- all_optim_state_keys = sorted(set(merge_all_optim_state_keys))
- else:
- key_obj_list: List[Optional[List[_OptimStateKey]]] = (
- [all_optim_state_keys] if rank == 0 else [None]
- )
- dist.broadcast_object_list(key_obj_list, src=0, group=group)
- assert key_obj_list[0] is not None
- all_optim_state_keys = key_obj_list[0]
- _check_missing_keys_on_rank(
- all_optim_state_keys,
- optim_state_key_to_param_key,
- param_key_to_param,
- group,
- )
- return all_optim_state_keys, optim_state_key_to_param_key
- def _unflatten_param_groups(
- state_dict: Dict[str, Any],
- param_key_to_param: Dict[Union[int, str], nn.Parameter],
- param_to_fqns: Dict[nn.Parameter, List[str]],
- ) -> List[Dict[str, Any]]:
- param_groups: List[Dict[str, Any]] = []
- for flat_param_group in state_dict["param_groups"]:
- unflat_param_group = copy.deepcopy(flat_param_group)
- param_group_params = [
- param_key_to_param[flat_param_key]
- for flat_param_key in flat_param_group["params"]
- ]
- nested_unflat_param_names = [
- param_to_fqns[param] for param in param_group_params
- ]
- unflat_param_group["params"] = [
- unflat_param_name
- for unflat_param_names in nested_unflat_param_names
- for unflat_param_name in unflat_param_names
- ] # flatten the list of lists
- param_groups.append(unflat_param_group)
- return param_groups
- def _is_named_optimizer(optim_state_dict: Dict[str, Any]) -> bool:
- state = optim_state_dict.get("state", None)
- if not state:
- # If we cannot find a state, assume it is not NamedOptimizer as
- # NamedOptimizer has eagerly initialization.
- return False
- try:
- key = next(iter(state.keys()))
- except Exception as e:
- raise Exception(optim_state_dict) from e
- return isinstance(key, str)
- def _optim_state_dict(
- model: nn.Module,
- optim: torch.optim.Optimizer,
- optim_state_dict: Dict[str, Any],
- optim_input: Optional[
- Union[
- List[Dict[str, Any]],
- Iterable[nn.Parameter],
- ]
- ],
- rank0_only: bool,
- shard_state: bool,
- group: Optional[dist.ProcessGroup],
- using_optim_input: bool,
- use_orig_params: bool = False,
- ) -> Dict[str, Any]:
- """
- Consolidates the optimizer state and returns it as a :class:`dict`
- following the convention of :meth:`torch.optim.Optimizer.state_dict`,
- i.e. with keys ``"state"`` and ``"param_groups"``.
- The flattened parameters in ``FSDP`` modules contained in ``model``
- are mapped back to their unflattened parameters.
- Parameter keys are not well-defined. For a regular optimizer, the optimizer
- state_dict contains a mapping from parameter IDs to parameter states.
- Parameter IDs are the order of parameters in ``optim.param_groups()`` across
- all the groups. This API also allows user to pass ``optim_input`` for the
- mapping between parameters and parameter IDs. Using ``optim_input`` is being
- deprecated.
- If the optimizer is a ``NamedOptimizer``, the optimizer state_dict does not
- contain parameter IDs mapping but a mapping from parameter FQNs to parameter
- states. This API finds the mapping from FQNs to parameters if the optimizer
- is a ``NamedOptimizer``.
- If ``use_orig_params`` is True, each rank will have all FSDP-managed
- parameters but some of these parameters may be empty due to the sharding.
- For a regular optim.Optimizer, states for those empty parameters will
- not be initialized. So, when aggregating the FQNs across ranks, no assert
- will be raised on a rank even if it does not have all the states -- it is
- valid and FSDP know how to aggregate them. However, FSDP has to ignore
- handling those parameters that are not managed by FSDP and do not exist on
- the local rank -- it is managed by other parallelism and FSDP does not
- know ho to handle/aggregate them.
- Args:
- model (nn.Module): Root module (which may or may not be a
- :class:`FullyShardedDataParallel` instance) whose parameters
- were passed into the optimizer ``optim``.
- optim (torch.optim.Optimizer): Optimizer for ``model`` 's
- parameters.
- rank0_only (bool): If ``True``, saves the populated :class:`dict`
- only on rank 0; if ``False``, saves it on all ranks. (Default:
- ``True``)
- shard_state (bool): If ``True``, shard and distribute all
- non-zero-dimension states.
- Returns:
- Dict[str, Any]: A :class:`dict` containing the optimizer state for
- ``model`` 's original unflattened parameters and including keys
- "state" and "param_groups" following the convention of
- :meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=False``,
- then nonzero ranks return an empty :class:`dict`.
- """
- _clear_grads_if_needed(traversal_utils._get_fsdp_handles(model))
- to_save = not rank0_only or (dist.get_rank(group) == 0 or shard_state)
- fsdp_osd: Dict[str, Any] = {"state": {}, "param_groups": []} if to_save else {}
- fsdp_osd_state: Dict[str, Any] = fsdp_osd["state"] if to_save else {}
- param_to_fqns = _get_param_to_fqns(model)
- flat_param_to_fqn = _get_flat_param_to_fqn(model)
- is_named_optimizer = _is_named_optimizer(optim_state_dict)
- param_key_to_param = cast(
- Dict[Union[int, str], nn.Parameter],
- (
- _get_param_id_to_param_from_optim_input(model, optim_input)
- if using_optim_input
- else _get_param_key_to_param(
- optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
- )
- ),
- )
- fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
- all_optim_state_keys, optim_state_key_to_param_key = _map_param_key_to_optim_keys(
- optim_state_dict,
- group,
- param_key_to_param,
- param_to_fqns,
- fqn_to_fsdp_param_info,
- merge_keys=use_orig_params,
- )
- # Iterate in rank 0's flattened parameter ID order to ensure aligned
- # all-gathers across ranks
- for optim_state_key in all_optim_state_keys:
- param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
- optim_state_key, None
- )
- if param_key is None:
- assert use_orig_params, (
- "If use_orig_params is False, we must be able to find the "
- f"corresponding param id. {optim_state_key} {param_key}"
- )
- if not optim_state_key.is_fsdp_managed:
- continue
- if optim_state_key.is_fsdp_managed:
- # If there are multiple unflat_param_names (not use_orig_params),
- # they share the same FSDPParamInfo. So the first unflat_param_name
- # is sufficient to fetch the FSDPParamInfo.
- fqn = optim_state_key.unflat_param_names[0]
- fsdp_param_info = fqn_to_fsdp_param_info[fqn]
- if use_orig_params:
- state = (
- {} if param_key is None else optim_state_dict["state"][param_key]
- )
- unflat_state = [
- _gather_orig_param_state(
- fsdp_param_info,
- fqn,
- state,
- shard_state,
- )
- ]
- else:
- unflat_state = _unflatten_optim_state(
- fsdp_param_info,
- optim_state_dict["state"][param_key],
- to_save,
- shard_state,
- )
- if to_save:
- assert len(unflat_state) == len(optim_state_key.unflat_param_names)
- for unflat_param_name, unflat_param_state in zip(
- optim_state_key.unflat_param_names,
- unflat_state,
- ):
- fsdp_osd_state[unflat_param_name] = unflat_param_state
- elif to_save:
- assert len(optim_state_key.unflat_param_names) == 1
- unflat_param_name = optim_state_key.unflat_param_names[0]
- fsdp_osd_state[unflat_param_name] = copy.copy(
- optim_state_dict["state"][param_key]
- )
- for state_name, value in sorted_items(fsdp_osd_state[unflat_param_name]):
- if torch.is_tensor(value):
- fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
- if to_save:
- flat_param_fqns = set(flat_param_to_fqn.values())
- for key, value in optim_state_dict["state"].items():
- if key in fsdp_osd_state:
- continue
- if key in flat_param_fqns:
- continue
- if key in param_key_to_param:
- continue
- # This key is not recognized by FSDP. It may be a user-defined state
- # or some parameters state that FSDP is unable to map from
- # ``optim.param_groups``.
- warnings.warn(
- f"Found a optim state, {key}, that FSDP cannot process. FSDP "
- "will directly copy everything to the returned state_dict. In "
- "most cases, this is a user-defined state that is not "
- "associated with any particular parameter. Another possible "
- "case is this state is managed by DMP. Otherwise, there may "
- " be a mismatched assumption of optim_state_dict of this mode."
- )
- fsdp_osd_state[key] = value
- fsdp_osd["param_groups"] = _unflatten_param_groups(
- optim_state_dict, param_key_to_param, param_to_fqns
- )
- return fsdp_osd
- def _get_fqn_to_fsdp_param_info(model: nn.Module) -> Dict[str, FSDPParamInfo]:
- """
- Construct the mapping from a param's fqn to its corresponding ``FSDPParamInfo``
- if the param is managed by FSDP. ``FlatParameter._fqns`` only stores the first
- FQN of a shared parameter. So the keys in the mapping are guaranteed to map
- to unique parameters.
- """
- def module_fn(module, prefix, fqn_to_param_info):
- fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
- if fsdp_state is None:
- return
- _lazy_init(fsdp_state, module)
- handles = _module_handles(fsdp_state, module)
- if not handles:
- return
- flat_param = handles[0].flat_param
- fsdp_param_info = FSDPParamInfo(fsdp_state, flat_param, {})
- for idx, local_fqn in enumerate(flat_param._fqns):
- fqn = clean_tensor_name(prefix + local_fqn)
- if fqn in fqn_to_param_info:
- assert fqn_to_param_info[fqn].flat_param == flat_param
- fqn_to_param_info[fqn] = fsdp_param_info
- fsdp_param_info.param_indices[fqn] = idx
- def return_fn(fqn_to_param_info):
- return fqn_to_param_info
- fqn_to_param_info: Dict[str, FSDPParamInfo] = {}
- # FlatParameter._fqns stores the local fqn, starting from the root of the
- # FSDP. Using _apply_to_modules() with model (may not be the FSDP root
- # module) allows us to construct the global fqn.
- return _apply_to_modules(
- model,
- module_fn,
- return_fn,
- [fqn for fqn, _ in model.named_parameters()],
- fqn_to_param_info,
- )
- @dataclass
- class StateInfo:
- tensors: Dict[str, _PosDimTensorInfo]
- scalar_tensors: Dict[str, torch.Tensor]
- non_tensors: Dict[str, Any]
- @dataclass
- class AllGatherInfo:
- tensors: List[torch.Tensor]
- numels: List[int]
- work: Optional[dist.Work]
- def _all_gather_optim_state(
- fsdp_state: _FSDPState, optim_state: Dict[str, Any]
- ) -> Dict[str, Any]:
- """
- All-gathering state from all the ranks. This API is slow as it uses
- ``all_gather_object``. However, optim state_dict is not in the critical path.
- We can fuse the communication across differnt state if the performance
- becomes a problem.
- """
- # Allgather the scalar tensor state, non-tensor states and tensors metadata.
- processed_state = StateInfo({}, {}, {})
- for state_name, value in sorted_items(optim_state):
- if torch.is_tensor(value):
- if value.dim() == 0:
- # Ensure that `step` is on CPU.
- processed_state.scalar_tensors[state_name] = value.cpu()
- else:
- processed_state.tensors[state_name] = _PosDimTensorInfo(
- value.shape, value.dtype
- )
- else:
- processed_state.non_tensors = value
- object_list: List[StateInfo] = [
- processed_state for _ in range(fsdp_state.world_size)
- ]
- dist.all_gather_object(object_list, processed_state)
- # Convert the gathered, pre-proccessed state of each rank to the original one.
- gathered_state: Dict[str, Any] = {}
- all_tensor_states = sorted(
- {n for state in object_list for n in state.tensors.keys()}
- )
- empty_ranks: Set[int] = set()
- for name in all_tensor_states:
- numels = []
- dtype = torch.float
- _empty_ranks: Set[int] = set()
- for rank, object_state in enumerate(object_list):
- numels.append(0)
- info = object_state.tensors.get(name, None)
- if info is not None:
- numels[-1] = info.shape.numel()
- dtype = info.dtype
- if numels[-1] == 0:
- _empty_ranks.add(rank)
- empty_func = functools.partial(
- torch.empty, dtype=dtype, device=fsdp_state.compute_device
- )
- if empty_ranks:
- assert empty_ranks == _empty_ranks
- empty_ranks = _empty_ranks
- local_state = optim_state.get(name, empty_func(0))
- local_state = local_state.to(fsdp_state.compute_device)
- tensors = [
- empty_func(numel) if rank != fsdp_state.rank else local_state
- for rank, numel in enumerate(numels)
- ]
- work = dist.all_gather(
- tensors, local_state, group=fsdp_state.process_group, async_op=True
- )
- gathered_state[name] = AllGatherInfo(tensors, numels, work)
- for rank, object_state in enumerate(object_list):
- if rank in empty_ranks:
- continue
- for name, non_tensor_value in object_state.non_tensors.items():
- curr_non_tensor_value = gathered_state.get(name, None)
- assert (
- curr_non_tensor_value is None
- or curr_non_tensor_value == non_tensor_value
- ), f"Different ranks have different values for {name}."
- gathered_state[name] = non_tensor_value
- for name, scalar_tensor_value in object_state.scalar_tensors.items():
- curr_scalar_tensor_value = gathered_state.get(name, None)
- assert curr_scalar_tensor_value is None or torch.equal(
- scalar_tensor_value, curr_scalar_tensor_value
- ), f"Different ranks have different values for {name}."
- gathered_state[name] = scalar_tensor_value
- for name, value in list(gathered_state.items()):
- if not isinstance(value, AllGatherInfo):
- continue
- assert value.work is not None
- value.work.wait()
- gathered_state[name] = torch.cat(
- [
- rank_tensor[:rank_numel]
- for rank_tensor, rank_numel in zip(value.tensors, value.numels)
- if rank_numel > 0
- ]
- )
- return gathered_state
- def _gather_orig_param_state(
- fsdp_param_info: FSDPParamInfo,
- fqn: str,
- optim_state: Dict[str, Any],
- shard_state: bool,
- ) -> Dict[str, Any]:
- """
- Gather the optimizer state for the original parameter with the name ``fqn``.
- This API should only be used when ``use_orig_params`` is True.
- """
- fsdp_state = fsdp_param_info.state
- assert (
- fsdp_state._use_orig_params
- ), "_gather_orig_param_state only support use_orig_params=True case"
- flat_param = fsdp_param_info.flat_param
- param_idx = fsdp_param_info.param_indices[fqn]
- if (
- fsdp_state.world_size == 1
- or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
- ):
- return optim_state
- gathered_state = _all_gather_optim_state(fsdp_state, optim_state)
- # Unflatten state values.
- for state_name, value in list(gathered_state.items()):
- if not torch.is_tensor(value) or value.dim() == 0:
- continue
- value = value[: flat_param._numels[param_idx]].reshape(
- flat_param._shapes[param_idx]
- )
- if shard_state:
- assert fsdp_state.process_group is not None
- value = _ext_chunk_tensor(
- value,
- fsdp_state.rank,
- fsdp_state.world_size,
- torch.cuda.device_count(),
- fsdp_state.process_group,
- )
- value = value.cpu()
- gathered_state[state_name] = value
- return gathered_state
- def _shard_orig_param_state(
- fsdp_param_info: FSDPParamInfo,
- fqn: str,
- optim_state: Dict[str, Any],
- ) -> Dict[str, Any]:
- """
- Shard the optimizer state for the original parameter with the name ``fqn``.
- This API should only be used when ``use_orig_params`` is True.
- """
- if not optim_state:
- return {}
- fsdp_state = fsdp_param_info.state
- flat_param = fsdp_param_info.flat_param
- param_idx = fsdp_param_info.param_indices[fqn]
- optim_state = _gather_state_dict(optim_state, fsdp_state.process_group)
- start, end = flat_param._shard_indices # type: ignore[attr-defined]
- if not (start <= param_idx <= end and flat_param._shard_param_offsets): # type: ignore[attr-defined]
- return {}
- param_start, param_end = flat_param._shard_param_offsets[param_idx - start] # type: ignore[attr-defined]
- # Flatten and shard the state.
- new_optim_state: Dict[str, Any] = {}
- for state_name, value in optim_state.items():
- if torch.is_tensor(value) and value.dim() > 0:
- value = value.flatten()[param_start : param_end + 1]
- new_optim_state[state_name] = value
- return new_optim_state
|