123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- import torch.nn as nn
- import torch.ao.nn.intrinsic as nni
- from typing import Union, Callable, Tuple, Dict, Optional, Type
- from torch.ao.quantization.utils import Pattern, get_combined_dict, MatchAllNode
- import itertools
- __all__ = [
- "fuse_conv_bn",
- "fuse_conv_bn_relu",
- "fuse_linear_bn",
- "fuse_convtranspose_bn",
- "get_fuser_method",
- "get_fuser_method_new",
- ]
- def fuse_conv_bn(is_qat, conv, bn):
- r"""Given the conv and bn modules, fuses them and returns the fused module
- Args:
- is_qat: a flag for whether we are using quantization aware training fusion
- or post training quantization fusion
- conv: Module instance of type conv2d/conv3d
- bn: Spatial BN instance that needs to be fused with the conv
- Examples::
- >>> m1 = nn.Conv2d(10, 20, 3)
- >>> b1 = nn.BatchNorm2d(20)
- >>> # xdoctest: +SKIP
- >>> m2 = fuse_conv_bn(m1, b1)
- """
- assert(conv.training == bn.training),\
- "Conv and BN both must be in the same mode (train or eval)."
- fused_module_class_map = {
- nn.Conv1d: nni.ConvBn1d,
- nn.Conv2d: nni.ConvBn2d,
- nn.Conv3d: nni.ConvBn3d,
- }
- if is_qat:
- assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
- assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True'
- assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True'
- fused_module_class = fused_module_class_map.get((type(conv)), None)
- if fused_module_class is not None:
- return fused_module_class(conv, bn)
- else:
- raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn)))
- else:
- return nn.utils.fuse_conv_bn_eval(conv, bn)
- def fuse_conv_bn_relu(is_qat, conv, bn, relu):
- r"""Given the conv and bn modules, fuses them and returns the fused module
- Args:
- is_qat: a flag for whether we are using quantization aware training fusion
- or post training quantization fusion
- conv: Module instance of type conv2d/conv3d
- bn: Spatial BN instance that needs to be fused with the conv
- Examples::
- >>> m1 = nn.Conv2d(10, 20, 3)
- >>> b1 = nn.BatchNorm2d(20)
- >>> r1 = nn.ReLU(inplace=False)
- >>> # xdoctest: +SKIP
- >>> m2 = fuse_conv_bn_relu(m1, b1, r1)
- """
- assert(conv.training == bn.training == relu.training),\
- "Conv and BN both must be in the same mode (train or eval)."
- fused_module : Optional[Type[nn.Sequential]] = None
- if is_qat:
- map_to_fused_module_train = {
- nn.Conv1d: nni.ConvBnReLU1d,
- nn.Conv2d: nni.ConvBnReLU2d,
- nn.Conv3d: nni.ConvBnReLU3d,
- }
- assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm'
- assert bn.affine, 'Only support fusing BatchNorm with affine set to True'
- assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True'
- fused_module = map_to_fused_module_train.get(type(conv), None)
- if fused_module is not None:
- return fused_module(conv, bn, relu)
- else:
- raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu)))
- else:
- map_to_fused_module_eval = {
- nn.Conv1d: nni.ConvReLU1d,
- nn.Conv2d: nni.ConvReLU2d,
- nn.Conv3d: nni.ConvReLU3d,
- }
- fused_module = map_to_fused_module_eval.get(type(conv), None)
- if fused_module is not None:
- fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
- return fused_module(fused_conv, relu)
- else:
- raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu)))
- def fuse_linear_bn(is_qat, linear, bn):
- r"""Given the linear and bn modules, fuses them and returns the fused module
- Args:
- is_qat: a flag for whether we are using quantization aware training fusion
- or post training quantization fusion
- linear: Module instance of type Linear
- bn: BatchNorm1d instance that needs to be fused with the linear layer
- Examples::
- >>> m1 = nn.Linear(20, 10)
- >>> b1 = nn.BatchNorm1d(10)
- >>> # xdoctest: +SKIP
- >>> m2 = fuse_linear_bn(m1, b1)
- """
- assert(linear.training == bn.training),\
- "Linear and BN both must be in the same mode (train or eval)."
- if is_qat:
- assert bn.num_features == linear.out_features,\
- "Output features of Linear must match num_features of BatchNorm1d"
- assert bn.affine, "Only support fusing BatchNorm1d with affine set to True"
- assert bn.track_running_stats,\
- "Only support fusing BatchNorm1d with tracking_running_stats set to True"
- return nni.LinearBn1d(linear, bn)
- else:
- return nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
- def fuse_convtranspose_bn(is_qat, convt, bn):
- r"""Given ConvTranspose and bn modules, fuses them and returns the fused module
- Args:
- convt: Module instance of type ConvTransposeNd
- bn: BatchNormNd instance that needs to be fused with the linear layer.
- batch norm N should match the ConvTranspose N
- Examples::
- >>> m1 = nn.ConvTranspose2d(10, 20, 3)
- >>> b1 = nn.BatchNorm2d(20)
- >>> # xdoctest: +SKIP
- >>> m2 = fuse_convtranspose_bn(m1, b1)
- """
- assert(convt.training == bn.training),\
- "ConvTranspose and BN both must be in the same mode (train or eval)."
- if is_qat:
- raise Exception("Fusing ConvTranspose+BatchNorm not yet supported in QAT.")
- else:
- return nn.utils.fusion.fuse_conv_bn_eval(convt, bn, transpose=True)
- def _sequential_wrapper2(sequential):
- """ Given a sequential class for two modules, return a function that takes
- is_qat, and then two modules as argument, that ignores the is_qat flag
- and always returns the sequential that combines the two input modules
- """
- def fuser_method(is_qat, m1, m2):
- return sequential(m1, m2)
- return fuser_method
- _DEFAULT_OP_LIST_TO_FUSER_METHOD: Dict[Tuple, Union[nn.Sequential, Callable]] = {
- (nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn,
- (nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu,
- (nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn,
- (nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu,
- (nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn,
- (nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu,
- (nn.Conv1d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU1d),
- (nn.Conv2d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU2d),
- (nn.Conv3d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU3d),
- (nn.Linear, nn.BatchNorm1d): fuse_linear_bn,
- (nn.Linear, nn.ReLU): _sequential_wrapper2(nni.LinearReLU),
- (nn.BatchNorm2d, nn.ReLU): _sequential_wrapper2(nni.BNReLU2d),
- (nn.BatchNorm3d, nn.ReLU): _sequential_wrapper2(nni.BNReLU3d),
- (nn.ConvTranspose1d, nn.BatchNorm1d): fuse_convtranspose_bn,
- (nn.ConvTranspose2d, nn.BatchNorm2d): fuse_convtranspose_bn,
- (nn.ConvTranspose3d, nn.BatchNorm3d): fuse_convtranspose_bn,
- }
- def get_fuser_method(op_list, additional_fuser_method_mapping=None):
- ''' Get fuser method for the given list of module types,
- return None if fuser method does not exist
- '''
- if additional_fuser_method_mapping is None:
- additional_fuser_method_mapping = {}
- all_mappings = get_combined_dict(_DEFAULT_OP_LIST_TO_FUSER_METHOD,
- additional_fuser_method_mapping)
- fuser_method = all_mappings.get(op_list, None)
- assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list)
- return fuser_method
- def _reverse2(f):
- def reversed(is_qat, x, y):
- return f(is_qat, y, x)
- return reversed
- def _reverse3(f):
- def reversed(is_qat, x, w):
- y, z = w
- return f(is_qat, z, y, x)
- return reversed
- def _get_valid_patterns(op_pattern):
- """
- Returns a list of valid patterns generated from the op_pattern,
- since MatchAllNode can match all types of nodes,
- e.g. pattern (torch.nn.Conv2d, torch.add) should also be able to match keys like
- (MatchAllNode, torch.add) and (torch.nn.Conv2d, MatchAllNode)
- Example Input:
- (torch.add, (torch.nn.ReLU, torch.nn.Conv2d))
- Example Output:
- [(torch.add, (torch.nn.ReLU, torch.nn.Conv2d)),
- (torch.add, (torch.nn.ReLU, MatchAllNode)),
- (torch.add, (MatchAllNode, torch.nn.Conv2d)),
- (torch.add, (MatchAllNode, MatchAllNode)),
- (MatchAllNode, (torch.nn.ReLU, torch.nn.Conv2d)),
- (MatchAllNode, (torch.nn.ReLU, MatchAllNode)),
- (MatchAllNode, (MatchAllNode, torch.nn.Conv2d)),
- (MatchAllNode, (MatchAllNode, MatchAllNode)),
- ]
- """
- result = []
- if isinstance(op_pattern, (tuple, list)):
- sub_combs = []
- for sub_pattern in op_pattern:
- sub_combs.append(_get_valid_patterns(sub_pattern))
- result = list(itertools.product(*sub_combs))
- else:
- result = [op_pattern, MatchAllNode]
- return result
- def get_fuser_method_new(
- op_pattern: Pattern,
- fuser_method_mapping: Dict[Pattern, Union[nn.Sequential, Callable]]):
- """ This will be made defult after we deprecate the get_fuser_method
- Would like to implement this first and have a separate PR for deprecation
- """
- op_patterns = _get_valid_patterns(op_pattern)
- fuser_method = None
- for op_pattern in op_patterns:
- fuser_method = fuser_method_mapping.get(op_pattern, None)
- if fuser_method is not None:
- break
- assert fuser_method is not None, "did not find fuser method for: {} ".format(op_pattern)
- return fuser_method
|