123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- toq = torch.ops.quantized
- from torch.fx import GraphModule
- from torch.fx.graph import Node
- from torch.ao.quantization.backend_config import get_native_backend_config
- from torch.ao.quantization.fx.quantize_handler import _get_pattern_to_quantize_handlers
- from torch.ao.quantization.utils import getattr_from_fqn
- from .ns_types import NSNodeTargetType
- from torch.ao.quantization import (
- ObserverBase,
- FakeQuantizeBase,
- )
- from typing import Dict, Tuple, Set, Callable, Any, Union, List
- def get_type_a_related_to_b(
- base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
- ) -> Set[Tuple[NSNodeTargetType, NSNodeTargetType]]:
- # TODO(future PR): allow customizations
- # TODO(future PR): reuse existing quantization mappings
- # TODO(future PR): add the rest of modules and ops here
- type_a_related_to_b: Set[Tuple[NSNodeTargetType, NSNodeTargetType]] = set()
- for base_name, s in base_name_to_sets_of_related_ops.items():
- s_list = list(s)
- # add every bidirectional pair
- for idx_0 in range(0, len(s_list)):
- for idx_1 in range(idx_0, len(s_list)):
- type_a_related_to_b.add((s_list[idx_0], s_list[idx_1]))
- type_a_related_to_b.add((s_list[idx_1], s_list[idx_0]))
- return type_a_related_to_b
- NSFusionElType = Union[
- Callable, # call_function or call_module type, example: F.linear or nn.Conv2d
- str, # call_method name, example: "dequantize"
- Tuple[str, Any], # call_method name and first argument, example: ("to", torch.float16)
- ]
- NSFusionType = Union[
- Tuple[NSFusionElType, NSFusionElType],
- Tuple[NSFusionElType, NSFusionElType, NSFusionElType, NSFusionElType],
- ]
- def get_reversed_fusions() -> List[Tuple[NSFusionType, int]]:
- """
- Set of potential fusions, in reverse order. The order is reversed
- to match how fusion patterns are defined in quantization code.
- Fusion format:
- ((fusion_op_0, fusion_op_1), base_op_idx)
- Where base_op_idx is the idx of the op we should use to match other related
- ops. Note: base_op_idx is specified in non-reverse order, i.e. a base_op_idx
- of 0 represents the first op in regular (non-reverse) order, 1 represents the
- second op, etc.
- """
- results: List[Tuple[NSFusionType, int]] = []
- # Possible syntaxes:
- # * single op: torch.nn.Conv2d
- # * multiple ops: (torch.nn.ReLU, torch.nn.Conv2d)
- # For fusions, we only care about patterns composed of multiple ops.
- # TODO(future PR): allow customizations from default patterns.
- all_quant_patterns = _get_pattern_to_quantize_handlers(get_native_backend_config())
- default_base_op_idx = 0
- for quant_pattern, _quant_handler in all_quant_patterns.items():
- # TODO: this is a temporary hack to flatten the patterns from quantization so
- # that it works with the ns matcher function, maybe we should use `_is_match`
- # in torch.ao.quantization.fx.match_utils to match the patterns
- if isinstance(quant_pattern, tuple) and len(quant_pattern) == 2 and \
- isinstance(quant_pattern[1], tuple) and len(quant_pattern[1]) == 2:
- # flatten the pattern with form (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
- quant_pattern = (quant_pattern[0], quant_pattern[1][0], quant_pattern[1][1])
- # Only patterns of multiple ops are fusions, ignore
- # patterns which contain a single ops (they get matched
- # without caring about fusions).
- if isinstance(quant_pattern, tuple):
- results.append((quant_pattern, default_base_op_idx)) # type: ignore[arg-type]
- # For each pattern, add additional patterns with observers and
- # fake quants at the end.
- # TODO(future PR): if needed, implement matching for a node
- # having multiple output observers.
- for cls in (ObserverBase, FakeQuantizeBase):
- if isinstance(quant_pattern, tuple):
- new_pattern = (cls, *quant_pattern)
- else:
- new_pattern = (cls, quant_pattern)
- results.append((new_pattern, default_base_op_idx)) # type: ignore[arg-type]
- # After this point, results countains values such as
- # [..., ((torch.nn.Relu, torch.nn.Conv2d), 0), ...]
- # Patterns for matching fp16 emulation are not specified in the quantization
- # fusion mappings. For now, define them here.
- fp16_em_base_op_idx = 1
- patterns_to_add = [
- # linear-relu fp16 emulation:
- # fp16_to_fp32 -> linear -> relu -> fp32_to_fp16
- ((("to", torch.float16), F.relu, F.linear, "dequantize"), fp16_em_base_op_idx,),
- # Conv-BN fusion (this happens outside of quantization patterns,
- # which is why it is defined separately here).
- ((nn.BatchNorm1d, nn.Conv1d), default_base_op_idx),
- ((nn.BatchNorm2d, nn.Conv2d), default_base_op_idx),
- ((nn.BatchNorm3d, nn.Conv3d), default_base_op_idx),
- ((nn.ReLU, nn.BatchNorm1d, nn.Conv1d), default_base_op_idx),
- ((nn.ReLU, nn.BatchNorm2d, nn.Conv2d), default_base_op_idx),
- ((nn.ReLU, nn.BatchNorm3d, nn.Conv3d), default_base_op_idx),
- ]
- for p in patterns_to_add:
- results.append(p) # type: ignore[arg-type]
- results.append(((ObserverBase, *p[0]), p[1])) # type: ignore[arg-type]
- results.append(((FakeQuantizeBase, *p[0]), p[1])) # type: ignore[arg-type]
- return results
- def end_node_matches_reversed_fusion(
- end_node: Node,
- reversed_fusion: NSFusionType,
- gm: GraphModule,
- seen_nodes: Set[Node],
- ) -> bool:
- """
- Returns true if a pattern ending with `end_node` matches
- the fusion pattern.
- """
- cur_node = end_node
- for fusion_idx in range(len(reversed_fusion)):
- # each node can only belong to one matched pattern
- if cur_node in seen_nodes:
- return False
- cur_fusion_el = reversed_fusion[fusion_idx]
- if cur_node.op == 'call_function':
- fusion_el_is_fun = (not isinstance(cur_fusion_el, str)) and \
- (not isinstance(cur_fusion_el, type))
- if fusion_el_is_fun:
- if cur_node.target != cur_fusion_el:
- return False
- if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
- cur_node = cur_node.args[0]
- else:
- return False
- else:
- return False
- elif cur_node.op == 'call_module':
- fusion_el_is_mod = isinstance(cur_fusion_el, type)
- if fusion_el_is_mod:
- assert isinstance(cur_node.target, str)
- target_mod = getattr_from_fqn(gm, cur_node.target)
- if not isinstance(cur_fusion_el, type):
- return False
- if not isinstance(target_mod, cur_fusion_el):
- return False
- if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
- cur_node = cur_node.args[0]
- else:
- return False
- else:
- return False
- elif cur_node.op == 'call_method':
- fusion_el_is_meth_with_second_arg = \
- isinstance(cur_fusion_el, tuple) and len(cur_fusion_el) == 2
- fusion_el_is_meth_without_args = isinstance(cur_fusion_el, str)
- if fusion_el_is_meth_without_args or fusion_el_is_meth_with_second_arg:
- if fusion_el_is_meth_without_args:
- if cur_node.target != cur_fusion_el:
- return False
- else:
- assert isinstance(cur_fusion_el, tuple)
- if cur_node.target != cur_fusion_el[0]:
- return False
- elif len(cur_node.args) < 2:
- return False
- elif cur_node.args[1] != cur_fusion_el[1]:
- return False
- if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
- cur_node = cur_node.args[0]
- else:
- return False
- else:
- return False
- else:
- return False
- return True
|