123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- from typing import Optional
- import torch
- from torch.ao.nn.quantized.modules.utils import _quantize_weight, _hide_packed_params_repr
- __all__ = ['LinearPackedParams', 'Linear']
- # TODO (zaf): Inherit from `quantized.LinearPackedParams` (T83294430)
- class LinearPackedParams(torch.nn.Module):
- _version = 1
- def __init__(self, row_block_size=1, col_block_size=4, dtype=torch.qint8):
- super().__init__()
- if dtype != torch.qint8:
- raise NotImplementedError("Linear prepacking only supports QINT8")
- self.dtype = dtype
- wq = torch._empty_affine_quantized([1, 1], scale=1.0, zero_point=0, dtype=torch.qint8)
- self.set_weight_bias(wq, None, row_block_size, col_block_size)
- def _get_name(self):
- return "SparseQuantizedLinearPackedParams"
- @torch.jit.export
- def set_weight_bias(self, weight: torch.Tensor, bias: Optional[torch.Tensor],
- row_block_size: Optional[int], col_block_size: Optional[int]) -> None:
- assert row_block_size is not None and col_block_size is not None
- self._packed_params = torch.ops.sparse.qlinear_prepack(weight, bias, row_block_size, col_block_size)
- @torch.jit.export
- def _weight_bias(self):
- (weight, bias, block_sizes) = torch.ops.sparse.qlinear_unpack(self._packed_params)
- return (weight, bias, block_sizes[0], block_sizes[1])
- def forward(self, x):
- return x
- def _save_to_state_dict(self, destination, prefix, keep_vars):
- super()._save_to_state_dict(destination, prefix, keep_vars)
- destination[prefix + 'dtype'] = self.dtype
- destination[prefix + '_packed_params'] = self._weight_bias()
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- version = local_metadata.get('version', None)
- assert version <= self._version
- self.dtype = state_dict.pop(prefix + 'dtype')
- weight, bias, row_block_size, col_block_size = state_dict.pop(prefix + '_packed_params')
- self.set_weight_bias(weight, bias, row_block_size, col_block_size)
- super()._load_from_state_dict(state_dict, prefix, local_metadata, False,
- missing_keys, unexpected_keys, error_msgs)
- @torch.jit.export
- def __getstate__(self):
- return self._packed_params, self.training, self.dtype
- @torch.jit.export
- def __setstate__(self, state):
- (self._packed_params, self.training, self.dtype) = state
- def __repr__(self):
- return self._weight_bias().__repr__()
- # TODO (zaf): Inherit from `quantized.Linear` (T83294430)
- class Linear(torch.nn.Module):
- r"""
- A quantized sparse linear module with quantized tensor as inputs and outputs.
- """
- _version = 1
- _FLOAT_MODULE = torch.nn.Linear
- def __init__(self, in_features, out_features, row_block_size, col_block_size, bias=True, dtype=torch.qint8):
- super().__init__()
- if dtype != torch.qint8:
- raise NotImplementedError("Only QINT8 is supported for Sparse Quantized Linear")
- self.in_features = in_features
- self.out_features = out_features
- if bias:
- bias = torch.zeros(self.out_features, dtype=torch.float)
- else:
- bias = None
- qweight = torch._empty_affine_quantized([out_features, in_features],
- scale=1, zero_point=0, dtype=torch.qint8)
- self._packed_params = LinearPackedParams(row_block_size=row_block_size,
- col_block_size=col_block_size,
- dtype=dtype)
- self._packed_params.set_weight_bias(qweight, bias, row_block_size, col_block_size)
- self.scale = 1.0
- self.zero_point = 0
- @classmethod
- def _get_name(cls):
- return 'SparseQuantizedLinear'
- def extra_repr(self):
- return 'in_features={}, out_features={}, scale={}, zero_point={}, qscheme={}'.format(
- self.in_features, self.out_features, self.scale, self.zero_point, self.weight().qscheme()
- )
- def __repr__(self):
- return _hide_packed_params_repr(self, LinearPackedParams)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return torch.ops.sparse.qlinear(x, self._packed_params._packed_params, self.scale, self.zero_point)
- def _save_to_state_dict(self, destination, prefix, keep_vars):
- super()._save_to_state_dict(destination, prefix, keep_vars)
- destination[prefix + 'scale'] = torch.tensor(self.scale)
- destination[prefix + 'zero_point'] = torch.tensor(self.zero_point)
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- self.scale = float(state_dict[prefix + 'scale'])
- state_dict.pop(prefix + 'scale')
- self.zero_point = int(state_dict[prefix + 'zero_point'])
- state_dict.pop(prefix + 'zero_point')
- op_type = int(state_dict[prefix + 'op_type'])
- state_dict.pop(prefix + 'op_type')
- version = local_metadata.get('version', None)
- assert version <= self._version
- super()._load_from_state_dict(
- state_dict, prefix, local_metadata, False,
- missing_keys, unexpected_keys, error_msgs)
- def _weight_bias(self):
- return self._packed_params._weight_bias()
- def weight(self):
- return self._weight_bias()[0]
- def bias(self):
- return self._weight_bias()[1]
- def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor],
- row_block_size: Optional[int], col_block_size: Optional[int]) -> None:
- assert row_block_size is not None and col_block_size is not None
- self._packed_params.set_weight_bias(w, b, row_block_size, col_block_size)
- @classmethod
- def from_float(cls, mod):
- r"""Create a quantized sparse module from a float module.
- We only care about the convert at this stage, no need for observers just yet.
- TODO(zaf): Need to add the sparse params to the qconfig
- """
- assert type(mod) == cls._FLOAT_MODULE, cls._get_name() + \
- '.from_float only works for ' + cls._FLOAT_MODULE.__name__
- assert hasattr(mod, 'sparse_params'), \
- ('Expecting the Linear to have `sparse_params`. Make sure you have provided arguments '
- 'in the `sparsifier.squash_mask(params_to_save=("sparse_block_shape",))` method.')
- sparse_block_shape = mod.sparse_params.get('sparse_block_shape', None) # type: ignore[operator, union-attr]
- assert isinstance(sparse_block_shape, (tuple, list))
- assert len(sparse_block_shape) == 2
- # TODO: Need to add options to qconfig to avoid the calibration.
- # TODO: Add calibration for the sparsity
- assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
- activation_post_process = mod.activation_post_process
- weight_post_process = mod.qconfig.weight() # type: ignore[operator, union-attr]
- # Assumption is that the weight is already sparsified by the
- # `sparsifier.convert`
- weight = mod.weight
- weight_post_process(weight)
- dtype = weight_post_process.dtype
- act_scale, act_zp = activation_post_process.calculate_qparams() # type: ignore[operator, union-attr]
- assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8'
- w_sc, w_zp = weight_post_process.calculate_qparams()
- if isinstance(w_zp, torch.Tensor):
- assert not torch.any(w_zp.bool()), "All weight zero points must map to 0"
- else:
- assert w_zp == 0, 'Weight zero point must map to 0'
- qweight = _quantize_weight(weight.float(), weight_post_process)
- row_block_size = mod.sparse_params['sparse_block_shape'][0] # type: ignore[index]
- col_block_size = mod.sparse_params['sparse_block_shape'][1] # type: ignore[index]
- qlinear = cls(mod.in_features,
- mod.out_features,
- row_block_size,
- col_block_size,
- dtype=dtype)
- qlinear.set_weight_bias(qweight, mod.bias,
- row_block_size, col_block_size) # type: ignore[arg-type]
- qlinear.scale = float(act_scale)
- qlinear.zero_point = int(act_zp)
- return qlinear
|