123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import torch
- import torch.ao.nn.quantized as nnq
- from torch.ao.nn.quantized.modules.utils import _quantize_weight
- import torch.ao.nn.intrinsic as nni
- __all__ = [
- "Linear",
- ]
- class Linear(nnq.Linear):
- r"""
- A dynamic quantized linear module with floating point tensor as inputs and outputs.
- We adopt the same interface as `torch.nn.Linear`, please see
- https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
- Similar to :class:`torch.nn.Linear`, attributes will be randomly
- initialized at module creation time and will be overwritten later
- Attributes:
- weight (Tensor): the non-learnable quantized weights of the module which are of
- shape :math:`(\text{out\_features}, \text{in\_features})`.
- bias (Tensor): the non-learnable floating point bias of the module of shape
- :math:`(\text{out\_features})`. If :attr:`bias` is ``True``,
- the values are initialized to zero.
- Examples::
- >>> # xdoctest: +SKIP
- >>> m = nn.quantized.dynamic.Linear(20, 30)
- >>> input = torch.randn(128, 20)
- >>> output = m(input)
- >>> print(output.size())
- torch.Size([128, 30])
- """
- # version used in this class is different from the parent class nnq.Linear
- _version = 4
- def __init__(self, in_features, out_features, bias_=True, dtype=torch.qint8):
- super().__init__(in_features, out_features, bias_, dtype=dtype)
- # We don't muck around with buffers or attributes or anything here
- # to keep the module simple. *everything* is simply a Python attribute.
- # Serialization logic is explicitly handled in the below serialization and
- # deserialization modules
- self.version = 4
- def forward(self, x):
- # Note that we can handle self.bias == None case.
- if self._packed_params.dtype == torch.qint8:
- if self.version is None or self.version < 4:
- Y = torch.ops.quantized.linear_dynamic(
- x, self._packed_params._packed_params)
- else:
- Y = torch.ops.quantized.linear_dynamic(
- x, self._packed_params._packed_params, reduce_range=True)
- elif self._packed_params.dtype == torch.float16:
- Y = torch.ops.quantized.linear_dynamic_fp16(
- x, self._packed_params._packed_params)
- else:
- raise RuntimeError('Unsupported dtype on dynamic quantized linear!')
- return Y.to(x.dtype)
- def _get_name(self):
- return 'DynamicQuantizedLinear'
- def extra_repr(self):
- extra_repr_str = 'in_features={}, out_features={}, dtype={}'.format(
- self.in_features, self.out_features, self._packed_params.dtype
- )
- if self._packed_params.dtype == torch.qint8:
- extra_repr_str += ', qscheme={}'.format(self.weight().qscheme())
- return extra_repr_str
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- version = local_metadata.get('version', None)
- self.version = version
- super()._load_from_state_dict(state_dict, prefix, local_metadata, False,
- missing_keys, unexpected_keys, error_msgs)
- @classmethod
- def from_float(cls, mod):
- r"""Create a dynamic quantized module from a float module or qparams_dict
- Args:
- mod (Module): a float module, either produced by torch.ao.quantization
- utilities or provided by the user
- """
- float_modules = [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear,
- torch.ao.nn.intrinsic.modules.fused.LinearReLU, torch.ao.nn.qat.dynamic.Linear]
- assert type(mod) in float_modules, \
- 'nn.quantized.dynamic.Linear.from_float only works for one of' + \
- str([float_mod.__name__ for float_mod in float_modules])
- assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
- if type(mod) == nni.LinearReLU:
- mod = mod[0]
- if mod.qconfig is not None and mod.qconfig.weight is not None:
- weight_observer = mod.qconfig.weight()
- else:
- # We have the circular import issues if we import the qconfig in the beginning of this file:
- # https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
- # import until we need it.
- from torch.ao.quantization.qconfig import default_dynamic_qconfig
- weight_observer = default_dynamic_qconfig.weight()
- dtype = weight_observer.dtype
- assert dtype in [torch.qint8, torch.float16], "The only supported dtypes for " \
- "dynamic quantized linear are qint8 and float16 got: {}".format(dtype)
- weight_observer(mod.weight)
- if dtype == torch.qint8:
- qweight = _quantize_weight(mod.weight.float(), weight_observer)
- elif dtype == torch.float16:
- qweight = mod.weight.float()
- else:
- raise RuntimeError('Unsupported dtype specified for dynamic quantized Linear!')
- qlinear = cls(mod.in_features, mod.out_features, dtype=dtype)
- qlinear.set_weight_bias(qweight, mod.bias)
- return qlinear
- @classmethod
- def from_reference(cls, ref_qlinear):
- """ Create a (fbgemm/qnnpack) dynamic quantized module from a reference quantized
- module
- Args:
- ref_qlinear (Module): a reference quantized module, either produced by
- torch.ao.quantization functions or provided by the user
- """
- qlinear = cls(ref_qlinear.in_features, ref_qlinear.out_features, dtype=ref_qlinear.weight_dtype)
- qweight = ref_qlinear.get_quantized_weight()
- bias = ref_qlinear.bias
- qlinear.set_weight_bias(qweight, bias)
- return qlinear
|