123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- from functools import partial
- from typing import List, Optional, Tuple, Union
- import torch
- import torch._prims as prims
- import torch._prims_common as utils
- import torch._refs as refs
- import torch._refs.linalg as linalg
- from torch import Tensor
- from torch._prims_common import (
- check,
- check_fp_or_complex,
- check_is_matrix,
- Dim,
- DimsType,
- NumberType,
- TensorLikeType,
- )
- from torch._prims_common.wrappers import _maybe_convert_to_dtype, out_wrapper
- __all__ = [
- "svd",
- "vector_norm",
- "matrix_norm",
- "norm",
- ]
- def check_norm_dtype(dtype: Optional[torch.dtype], x_dtype: torch.dtype, fn_name: str):
- """
- Checks related to the dtype kwarg in `linalg.*norm` functions
- """
- if dtype is not None:
- check(
- utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype),
- lambda: f"{fn_name}: dtype should be floating point or complex. Got {dtype}",
- )
- check(
- utils.is_complex_dtype(dtype) == utils.is_complex_dtype(x_dtype),
- lambda: "{fn_name}: dtype should be {d} for {d} inputs. Got {dtype}".format(
- fn_name=fn_name,
- d="complex" if utils.is_complex_dtype(x_dtype) else "real",
- dtype=dtype,
- ),
- )
- check(
- utils.get_higher_dtype(dtype, x_dtype) == dtype,
- lambda: f"{fn_name}: the dtype of the input ({x_dtype}) should be convertible "
- "without narrowing to the specified dtype ({dtype})",
- )
- # Utilities should come BEFORE this import
- from torch._decomp import register_decomposition
- @register_decomposition(torch._ops.ops.aten.linalg_vector_norm)
- @out_wrapper(exact_dtype=True)
- def vector_norm(
- x: TensorLikeType,
- ord: float = 2.0,
- dim: Optional[DimsType] = None,
- keepdim: bool = False,
- *,
- dtype: Optional[torch.dtype] = None,
- ) -> Tensor:
- # Checks
- check_fp_or_complex(x.dtype, "linalg.vector_norm")
- if isinstance(dim, Dim):
- dim = [dim] # type: ignore[assignment]
- if x.numel() == 0 and (ord < 0.0 or ord == float("inf")):
- check(
- dim is not None and len(dim) != 0,
- lambda: f"linalg.vector_norm cannot compute the {ord} norm on an empty tensor "
- "because the operation does not have an identity",
- )
- shape = x.shape
- assert dim is not None # mypy does not seem to be able to see through check?
- for d in dim:
- check(
- shape[d] != 0,
- lambda: f"linalg.vector_norm cannot compute the {ord} norm on the "
- f"dimension {d} because this dimension is empty and the "
- "operation does not have an identity",
- )
- check_norm_dtype(dtype, x.dtype, "linalg.vector_norm")
- computation_dtype, result_dtype = utils.reduction_dtypes(
- x, utils.REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT, dtype
- )
- to_result_dtype = partial(_maybe_convert_to_dtype, dtype=result_dtype)
- # Implementation
- if ord == 0.0:
- return torch.sum(torch.ne(x, 0.0), dim=dim, keepdim=keepdim, dtype=result_dtype)
- elif ord == float("inf"):
- return to_result_dtype(torch.amax(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
- elif ord == float("-inf"):
- return to_result_dtype(torch.amin(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
- else:
- # From here on the computation dtype is important as the reduction is non-trivial
- x = _maybe_convert_to_dtype(x, computation_dtype) # type: ignore[assignment]
- reduce_sum = partial(torch.sum, dim=dim, keepdim=keepdim)
- if not (ord % 2.0 == 0.0 and utils.is_float_dtype(x.dtype)):
- x = torch.abs(x)
- return to_result_dtype(torch.pow(reduce_sum(torch.pow(x, ord)), 1.0 / ord)) # type: ignore[return-value]
- def backshift_permutation(dim0, dim1, ndim):
- # Auxiliary function for matrix_norm
- # Computes the permutation that moves the two given dimensions to the back
- ret = [i for i in range(ndim) if i != dim0 and i != dim1]
- ret.extend((dim0, dim1))
- return ret
- def inverse_permutation(perm):
- # Given a permutation, returns its inverse. It's equivalent to argsort on an array
- return [i for i, j in sorted(enumerate(perm), key=lambda i_j: i_j[1])]
- # CompositeImplicitAutograd
- @out_wrapper(exact_dtype=True)
- def matrix_norm(
- A: TensorLikeType,
- ord: Union[float, str] = "fro",
- dim: DimsType = (-2, -1),
- keepdim: bool = False,
- *,
- dtype: Optional[torch.dtype] = None,
- ) -> TensorLikeType:
- # shape
- check_is_matrix(A, "linalg.matrix_norm")
- # dim
- dim = utils.canonicalize_dims(A.ndim, dim)
- if isinstance(dim, Dim):
- dim = (dim,) # type: ignore[assignment]
- check(len(dim) == 2, lambda: "linalg.matrix_norm: dim must be a 2-tuple. Got {dim}")
- check(
- dim[0] != dim[1],
- lambda: "linalg.matrix_norm: dims must be different. Got ({dim[0]}, {dim[1]})",
- )
- # dtype arg
- check_norm_dtype(dtype, A.dtype, "linalg.matrix_norm")
- if isinstance(ord, str):
- # ord
- check(
- ord in ("fro", "nuc"),
- lambda: "linalg.matrix_norm: Order {ord} not supported.",
- )
- # dtype
- check_fp_or_complex(
- A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != "nuc"
- )
- if ord == "fro":
- return vector_norm(A, 2, dim, keepdim, dtype=dtype)
- else: # ord == "nuc"
- if dtype is not None:
- A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
- perm = backshift_permutation(dim[0], dim[1], A.ndim)
- result = torch.sum(svdvals(prims.transpose(A, perm)), -1, keepdim)
- if keepdim:
- inv_perm = inverse_permutation(perm)
- result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
- return result
- else:
- # ord
- abs_ord = abs(ord)
- check(
- abs_ord in (2, 1, float("inf")),
- lambda: "linalg.matrix_norm: Order {ord} not supported.",
- )
- # dtype
- check_fp_or_complex(
- A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != 2
- )
- max_min = partial(torch.amax if ord > 0.0 else torch.amin, keepdim=keepdim)
- if abs_ord == 2.0:
- if dtype is not None:
- A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
- perm = backshift_permutation(dim[0], dim[1], A.ndim)
- result = max_min(svdvals(prims.transpose(A, perm)), dim=-1)
- if keepdim:
- inv_perm = inverse_permutation(perm)
- result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
- return result
- else: # 1, -1, inf, -inf
- dim0, dim1 = dim
- if abs_ord == float("inf"):
- dim0, dim1 = dim1, dim0
- if not keepdim and (dim0 < dim1):
- dim1 -= 1
- return max_min(
- vector_norm(A, 1.0, dim=dim0, keepdim=keepdim, dtype=dtype), dim1
- )
- # CompositeImplicitAutograd
- @out_wrapper(exact_dtype=True)
- def norm(
- A: TensorLikeType,
- ord: Optional[Union[float, str]] = None,
- dim: Optional[DimsType] = None,
- keepdim: bool = False,
- *,
- dtype: Optional[torch.dtype] = None,
- ) -> TensorLikeType:
- if dim is not None:
- if isinstance(dim, Dim):
- dim = (dim,) # type: ignore[assignment]
- check(
- len(dim) in (1, 2),
- lambda: "linalg.norm: If dim is specified, it must be of length 1 or 2. Got {dim}",
- )
- elif ord is not None:
- check(
- A.ndim in (1, 2),
- lambda: "linalg.norm: If dim is not specified but ord is, the input must be 1D or 2D. Got {A.ndim}D",
- )
- if ord is not None and (
- (dim is not None and len(dim) == 2) or (dim is None and A.ndim == 2)
- ):
- if dim is None:
- dim = (0, 1)
- return matrix_norm(A, ord, dim, keepdim, dtype=dtype)
- else:
- if ord is None:
- ord = 2.0
- return vector_norm(A, ord, dim, keepdim, dtype=dtype)
- # CompositeImplicitAutograd
- @out_wrapper("U", "S", "Vh", exact_dtype=True)
- def svd(A: TensorLikeType, full_matrices: bool = True) -> Tuple[Tensor, Tensor, Tensor]:
- return prims.svd(A, full_matrices=full_matrices)
- # CompositeImplicitAutograd
- @out_wrapper(exact_dtype=True)
- def svdvals(A: TensorLikeType) -> Tensor:
- return svd(A, full_matrices=False)[1]
|